亨廷顿氏病(HD)主要影响大脑,导致混合运动障碍,认知能力下降和行为异常。它还引起涉及骨骼肌的外周表型。线粒体DYS功能已在HD模型的组织中报道,包括骨骼肌,以及来自HD患者的淋巴细胞和成纤维细胞浮雕。突变的亨廷顿蛋白(Muthtt)表达会损害线粒体质量控制并加速线粒体衰老。在这里,我们获得了新鲜的人类骨骼肌,这是一种有线后组织,自出生以来,在生理水平上表达突变的HTT等位基因,以及HTT CAG重复膨胀突变携带者的原代细胞系,并匹配健康的志愿者,以检查人类HD中是否存在这种线粒体表型。使用超深线粒体DNA(mtDNA)测序,我们显示了影响氧化性PHOS磷酸化的mtDNA突变的积累。组织蛋白质组学表明MTDNA维持的障碍,线粒体生物发生的增加,氧化磷酸化效率较低(较低的复合物I和IV活性)。在全长muthtt中表明了原代人细胞系,裂变诱导的线粒体应激导致正常的线粒体。相比之下,高水平的N末端Muthtt片段的Ex压缩促进了线粒体裂变,导致线粒体裂变较慢,动态线粒体较低。由于体细胞核HTT CAG不稳定性引起的高水平Muthtt片段的表达会影响线粒体网络动力学和线粒体,从而导致致病性mtDNA突变。我们表明,突变体HTT的终生表达引起的线粒体表型,指示新鲜的有丝分裂后人类骨骼肌的mtDNA不稳定性。因此,基因组不稳定性可能不限于核DNA,在核DNA中,它会导致在诸如纹状体神经元之类的特别脆弱细胞中HTT CAG重复长度的体细胞扩张。除了针对因果突变的努力外,促进线粒体健康可能是治疗HD等DNA不稳定性疾病的互补性层次。
亨廷顿氏病(HD)主要影响大脑,导致混合运动障碍,认知能力下降和行为异常。它还引起涉及骨骼肌的外周表型。线粒体DYS功能已在HD模型的组织中报道,包括骨骼肌,以及来自HD患者的淋巴细胞和成纤维细胞浮雕。突变的亨廷顿蛋白(Muthtt)表达会损害线粒体质量控制并加速线粒体衰老。在这里,我们获得了新鲜的人类骨骼肌,这是一种有线后组织,自出生以来,在生理水平上表达突变的HTT等位基因,以及HTT CAG重复膨胀突变携带者的原代细胞系,并匹配健康的志愿者,以检查人类HD中是否存在这种线粒体表型。使用超深线粒体DNA(mtDNA)测序,我们显示了影响氧化性PHOS磷酸化的mtDNA突变的积累。组织蛋白质组学表明MTDNA维持的障碍,线粒体生物发生的增加,氧化磷酸化效率较低(较低的复合物I和IV活性)。在全长muthtt中表明了原代人细胞系,裂变诱导的线粒体应激导致正常的线粒体。相比之下,高水平的N末端Muthtt片段的Ex压缩促进了线粒体裂变,导致线粒体裂变较慢,动态线粒体较低。由于体细胞核HTT CAG不稳定性引起的高水平Muthtt片段的表达会影响线粒体网络动力学和线粒体,从而导致致病性mtDNA突变。我们表明,突变体HTT的终生表达引起的线粒体表型,指示新鲜的有丝分裂后人类骨骼肌的mtDNA不稳定性。因此,基因组不稳定性可能不限于核DNA,在核DNA中,它会导致在诸如纹状体神经元之类的特别脆弱细胞中HTT CAG重复长度的体细胞扩张。除了针对因果突变的努力外,促进线粒体健康可能是治疗HD等DNA不稳定性疾病的互补性层次。
鉴于其相关性,这项工作的主要目的是通过研究mtDNA的研究,葡萄牙北部地区的遗传表征。87个人居住在该地区,彼此之间无关。在进行MTDNA序列测试的背景下,还在北部代表团实验室,法医遗传学和生物学服务,国家法医学医学研究所和法医学科学(新的自动序列Sequencer Sequencer Sequdio seqstudio seqstudio seqstudio™遗传分析仪仪器)上进行了内部验证。灵敏度和特异性测试已成功完成,定义了0.001ng的最低检测浓度。验证了带有令人满意结果的头发样品,血迹和口服Zaragatoes的测试。
简介:自 COVID-19 大流行开始以来,已报告 COVID-19 患者的临床表现范围广泛,从无症状感染到轻度或重度疾病和死亡。研究表明了几种可能影响 COVID-19 临床结果的因素。促炎状态和抗病毒反应受损被认为是重症 COVID-19 的主要促成因素。考虑到线粒体在调节对病原体的免疫反应、促炎信号传导和细胞死亡方面发挥着重要作用,它在 SARS-CoV-2 感染中受到了广泛关注。最近的研究表明,高水平的无细胞线粒体 DNA(cf-mtDNA)与 COVID-19 重症监护病房 (ICU) 入院和死亡风险增加有关。然而,关于 SARS-CoV-2 感染中 cf-mtDNA 的研究很少,主要集中于重症 COVID-19 病例。在本研究中,我们调查了 COVID-19 患者的 cf -mtDNA 拷贝数,并比较了无症状病例和有症状病例,并评估了临床价值。我们还确定了研究组中的 cf -核 DNA (cf -nDNA) 拷贝数和线粒体转录因子 A (TFAM) mRNA 水平。
线粒体功能的增加可能会使一些癌症容易受到线粒体抑制剂的影响。由于线粒体DNA拷贝数(mTDNACN)部分调节线粒体功能,因此MTDNACN的准确测量可以帮助揭示哪些癌症是由线粒体功能增加的驱动,并且可能是候选线粒体抑制的候选者。然而,先前的研究采用了巨大的宏观解剖,无法说明MTDNACN中细胞型特异性或肿瘤细胞异质性。这些研究经常产生不清楚的结果,尤其是在前列腺癌中。本文中,我们开发了一种多重原位方法,用于量化细胞类型 - 特异性mtDNACN。我们表明,在前列腺腺癌(PCA)中,高级前列腺上皮内肿瘤(HGPIN)的腔细胞中有MTDNACN增加,并且在转移性castat依 - 耐药的前列腺癌中进一步升高。通过2种正交方法验证了PCA MTDNACN的增加,并伴随着MTRNA和酶活性的增加。从机械上讲,前列腺癌细胞中的MYC抑制作用降低了MTDNA复制和几个mtDNA复制基因的表达,而小鼠前列腺中的MYC激活会导致肿瘤前列腺细胞中的mtDNA水平升高。我们的原位方法还显示,胰腺和结肠/直肠的癌性病变中的mtdnaCn升高,使用临床组织样品表明了对癌症类型的概括。
哺乳动物细胞(除红细胞)外,线粒体具有提供能量,中间代谢物的细胞器,以及维持细胞活力,复制和功能的其他活动。线粒体包含称为线粒体DNA(mtDNA)的圆形基因组的多个拷贝,其内部序列很少是相同的(同型),因为遗传或散发性突变会导致多个mtDNA基因型(neteroplasmy)。在这里,我们研究了通过细胞重编程产生的诱导多能干细胞(IPSC)进行的杂质的维持或转移的潜在机制,并进一步讨论可以改变异质质以影响茎和分化细胞性能的杂质。这种额外的见解将有助于开发更强大的基于IPSC的疾病模型和分化的细胞疗法。
社会。最重要的是,迄今为止,针对这一系列致残或限制生命的疾病,获得许可的治疗方法极其有限(Chinnery,2015;Viscomi 等人,2023)。线粒体疾病的治疗方法包括对症治疗以改善生活质量或延长寿命,以及基因治疗以减少异质体并治愈细胞生化缺陷。对症治疗包括操纵线粒体的细胞含量、通过雷帕霉素诱导线粒体周转、恢复 NAD + 水平、调节活性氧的产生和氧化应激等(Russell 等人,2020)。基因治疗包括直接编辑线粒体基因组、基因替代疗法(Silva-Pinheiro 等,2020;Ling 等,2021)和线粒体移植疗法(Green field 等,2017)。基因编辑技术作为一种潜在的治疗选择,在过去十年中已在核遗传疾病的治疗中得到广泛研究(Sharma 等,2015;Nelson 等,2016;De Ravin 等,2017;Zheng 等,2022),越来越多的临床试验正在进行中(Arabi 等,2022)。然而,由于缺乏有效的工具来操纵 mtDNA( Silva-Pinheiro 和 Minczuk,2022 年),其在由 mtDNA 突变引起的线粒体疾病中的意义受到阻碍,除非通过锌指融合( Minczuk et al., 2008; Gammage et al., 2014; Gammage et al., 2016a; Gammage et al., 2016b; Gammage et al., 2018b )或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)切割和消除有害的 mtDNA 拷贝。线粒体DNA碱基编辑技术目前已发展成为生物技术中最常用的编辑技术之一(Pereira et al., 2018),以及基于TALE系统的单体酶(Pereira et al., 2018)。近年来,基于TALE的线粒体DNA碱基编辑工具陆续被引入,第一种是DddA衍生的胞嘧啶碱基编辑器(DdCBE)(Mok et al., 2020),它为按预期操纵线粒体DNA打开了大门。DddA系统来源于伯克霍尔德菌,DdCBE由两半无毒的TALE融合分裂DddA(DddA-N和DddA-C)组成,通过将这两半分裂的DddA重新组装成功能性脱氨酶,催化间隔区域内的胞嘧啶脱氨。目前,DdCBE 已成功应用于植物 (Kang et al., 2021)、哺乳动物细胞 (Mok et al., 2020)、斑马鱼 (Guo et al., 2021)、小鼠 (Lee et al., 2021; Lee et al., 2022a; Guo et al., 2022)、大鼠 (Qi et al., 2021) 甚至人类生殖细胞 (Wei et al., 2022a; Chen et al., 2022) 的线粒体 DNA 编辑。在我们的实验室中,它还已成功用于小鼠早期卵泡阶段的有效生殖系线粒体 DNA 编辑(已提交数据)。不幸的是,它在挽救线粒体疾病方面的应用极其罕见,无论是用于治疗研究(Silva-Pinheiro 等人,2022 年)还是用于临床试验(Chen 和 Yu-Wai-Man,2022 )。众所周知,潜在基因编辑结果的可预测性对于基因编辑技术在临床上用于基因治疗至关重要。为此,已经进行了大量的工作来了解CRISPR系统在核基因组编辑中对不同靶标的编辑规则,并且已经证明对于每个被CRISPR/Cas9编辑的原型间隔物来说,其结果是完全可预测的(van Overbeek et al., 2016 ; Shen et al., 2018 ; Shou et al., 2018 ; Allen et al., 2019 ; Chakrabarti et al., 2019 ; Chen et al., 2019 ; Long, 2019 ; Shi et al., 2019 ),这使我们能够提前知道每种策略在临床上应用的潜在结果。然而,对于线粒体基因组,由于缺乏 DNA 修复,CRISPR/Cas9 尚未参与 mtDNA 编辑
异质性是细胞中多个线粒体DNA(mtDNA)序列的共存,在植物中有充分的文献证明。下一代测序技术(NGS)使得整个基因组对整个基因组进行了可行。因此,NGS具有检测异质的潜力。但是,异质检测中的方法和陷阱尚未得到充分投资和确定。异质检测的一个障碍是线粒体,塑料和核DNA之间的序列同源性,其中核DNA片段与mtDNA同源(NOMT)的影响需要最小化。为了检测异质,我们首先排除了从糖甜菜mtDNA序列中排除甜菜甜菜(Beta fulgaris)系EL10的核DNA序列。ngs读数是从甜菜线NK-195BRMM-O和NK-291BRMM-O的单个植物中获得的,并映射到未分解的mtDNA区域。通过基因组浏览分析检测到的1000多个位点表现出个体内部多态性。我们专注于一个309 bp的区域,其中12个个体内多形态位点彼此紧密相关。尽管通过NK-195BRMM-O和NK-291BRMM-O的PCR扩增在12个位点存在变异等位基因的DNA分子的存在,但这些变体并不总是由六个变体呼叫程序调用,这表明这些程序不适合内部个体个人个性化的多种形式检测。当我们更改核DNA参考时,发现EL10缺乏的数字包括309 bp区域。NK-195BRMM-O X NK-291BRMM-O的F 2种群的遗传分离支持了变体等位基因的NOMT起源。使用四个参考文献,我们发现NUMT检测表现出参考依赖性,而甜菜线中存在NOMT的极端多态性。EL10中没有发现的numts之一与NK-195mm-O中的另一个个体内多态位点有关。我们的数据表明,在甜菜中,糖的多态性意外高,导致对杂质的真实程度的混乱。
摘要 领狐猴( Varecia variegata 和 Varecia rubra )在 IUCN 红色名录中被列为极度濒危物种,需要开展遗传学研究来评估圈养种群的保护价值。利用 线粒体 DNA (mtDNA) D-loop 序列,我们研究了马达加斯加、欧洲和北美圈养领狐猴的遗传多样性和结构。我们发现 10 个新的单倍型:一个来自欧洲圈养的 V. rubra 种群,三个来自圈养的 V. variegata sub-cincta(一个来自欧洲,两个来自马达加斯加),六个来自马达加斯加其他圈养的 V. variegata。我们发现欧洲和北美圈养的 V. variegata 种群的线粒体 DNA 遗传多样性较低。几个创始个体共享相同的线粒体 DNA 单倍型,因此在提出繁殖建议时不应假设它们是无关的创始个体。马达加斯加的圈养种群具有很高的遗传多样性,包括尚未在野生种群中发现的单倍型。我们通过与之前的研究进行比较,确定了圈养种群创始个体的可能地理来源;圈养领狐猴的所有报告单倍型都与位于马达加斯加芒戈罗河以北的野生种群的单倍型相同或聚集在一起。有效
摘要 DNA 损伤与 1 型干扰素 (T1IFN) 反应的刺激有关。本文,我们表明,DNA 修复蛋白多核苷酸激酶/磷酸酶 (PNKP) 在多种细胞系中的下调会导致 ST A T1 的强烈磷酸化、干扰素刺激基因的上调和细胞质 DNA 的持续积累,所有这些都是激活 T1IFN 反应的指标。此外,这不需要通过电离辐射诱导损伤。相反,我们的数据表明,活性氧 (ROS) 的产生与 PNKP 损失协同作用,增强 T1IFN 反应,并且 PNKP 的损失会严重损害线粒体 DNA (mtDNA) 的完整性。线粒体DNA的消耗或用ROS清除剂处理PNKP消耗的细胞可消除T1IFN反应,表明线粒体DNA是增强T1IFN反应所需的胞浆DNA的重要来源。STING信号通路是导致PNKP消耗细胞中促炎基因特征增加的原因。虽然反应依赖于ZBP1,但cGAS仅对某些细胞系的反应有贡献。我们的数据对癌症治疗具有重要意义,因为PNKP抑制剂有可能刺激免疫反应,也有可能刺激与PNKP突变相关的神经系统疾病。