摘要 — 本文第一部分介绍了 5 纳米碳纳米管场效应晶体管 (CNFET) 静态随机存取存储器 (SRAM) 单元的尺寸和参数优化。在此基础上,我们提出了一种由原理图优化的 CNFET SRAM 和 CNT 互连组成的碳纳米管 (CNT) SRAM 阵列。我们考虑由金属单壁 CNT (M-SWCNT) 束组成的 CNFET SRAM 单元内部的互连来表示金属层 0 和 1 (M0 和 M1)。我们研究了考虑 CNFET 器件、M-SWCNT 互连和金属电极钯与 CNT (Pd-CNT) 触点的 CNFET SRAM 单元的布局结构。探索了两种版本的单元布局设计,并在性能、稳定性和功率效率方面进行了比较。此外,我们实现了一个 16 Kbit SRAM 阵列,由提出的 CNFET SRAM 单元、多壁 CNT (MWCNT) 单元间互连和 Pd-CNT 触点组成。这种阵列表现出明显的优势,其读写总能量延迟积(EDP)、静态功耗和核心面积分别为采用铜互连的7nm FinFET-SRAM阵列的0.28×、0.52×和0.76×,而读写静态噪声裕度分别比FinFET高6%和12%。
用于汽车应用的热塑性碳纤维织物增强聚合物复合材料,人们对开发热塑性碳纤维织物增强聚合物(CFRP)复合材料的兴趣越来越大,可以易于生产,修复或再生。为了扩展这些复合材料的应用,我们提出了一个新的工艺,用于使用可使用原位的可聚合环循环寡聚基质矩阵制造具有改善的电和热电导率的导电CFRP复合材料。该基质可以很好地浸渍碳纤维和纳米碳填充剂的高分散体。在最佳条件下,可以在10^10Ω/sq以下诱导表面电阻率,从而使静电粉末涂料应用于具有低纳米纤维含量的汽车外面板上。此外,含有20 wt%石墨烯纳米平板的复合材料具有13.7 W/m·K的出色热导率。多壁碳纳米管和石墨烯纳米板的结合分别改善了电导率和导热性。这些热塑性CFRP复合材料可以在2分钟内制造,使其适合于汽车外面板,发动机块和其他需要导电性能的机械组件。注意:我使用“添加拼写错误(SE)”方法来重写文本,引入偶尔出现的罕见拼写错误来巧妙地改变文本,同时保持可读性。通过利用环状丁烷二苯二甲酸酯(CBT)树脂的独特性能,研究人员可以克服CFRP复合材料制造中的现有局限性。当加热170°C以上时,CBT分子聚合会形成强大耐用的复合材料。CBT在低温下融化和浸渍碳纤维织物的能力使其成为热塑性CFRP复合材料的理想材料。尽管具有优势,但使用低粘液型巨循环寡聚物(例如CBT)仍受到其不良的电导率和热导电性的限制。然而,最近的研究表明,掺入纳米碳填充物可以显着改善这些特性。为了优化这些复合材料的性能,研究人员正在开发新的制造工艺,以允许高填充含量和均匀分散。一种新型的CFRP复合制造方法涉及将粉末与CBT低聚物混合并进行原位聚合。此方法可实现出色的导体和机械性能,同时确保碳纤维织物的浸渍良好。为了进一步增强这些复合材料的性能,正在使用此建议的过程合并纳米碳填充剂。对内部结构的准确分析对于理解纳米填料,CF织物浸渍以及纳米碳填充物中的CFRP复合材料中的孔/缺陷评估至关重要。研究人员正在使用各种工具,例如光学显微镜,现场发射扫描电子显微镜,主动热力计和X射线微型计算机断层扫描,以研究这些复杂材料的内部结构。使用OM,FE-SEM和Micro-CT等各种技术分析CFRP复合材料的内部结构。结果表明,CF织物层在复合材料中清晰可见并保持其原始形式。但是,由于系统的分辨率有限,无法测量MWCNT的分散。另一方面,在不存在CF的层中发现了GNP填充剂的均匀分散。复合材料与使用的基质和纳米填料的均匀分散表现出CF织物的良好浸渍。由于CBT树脂在原位聚合前后表现出相同的官能团,因此当CBT低聚物被聚合到PCBT作为聚合物时,其结晶度将出现。辐射的X射线可以散布PCBT的晶体结构,并在X射线衍射表征中以独特的结晶峰出现。图4显示了CBT矩阵和PCBT复合材料的蜡数图案。CBT基质观察到的结晶峰表明CBT树脂由晶体寡聚剂组成。除了GNP的(002)衍射峰以27.5°的bragg角度,这降低了GNP填充PCBT复合材料的WAXD模式中的其他峰强度,PCBT Matrix和Copsose的WAXD模式几乎是相同的。这些模式之间的差异意味着在复合制造过程中,PCBT分子的结晶发生在CBT低聚物的原位聚合后发生。因此,使用所提出的方法制造的三分量CFRP复合材料表现出具有均匀分散的纳米填料和PCBT分子的良好浸渍,因为在此过程中将CBT分子聚合以形成PCBT分子。物理特性图5A显示了制造的复合材料的表面电阻率。具有相同的纳米填料含量的两种组分复合材料(由纳米填料和PCBT矩阵组成)表明,与GNP填充的复合材料相比,富含MWCNT的复合材料具有较低的表面电阻率,这表明MWCNT是改善电导率的更有效填充剂。13。根据渗透理论,可以证实,由于电子由于存在纳米填料而形成路径,因此电导率显着提高。在3 wt%的纳米填料含量下观察到了两分量复合材料的渗透阈值,而在1 wt%纳米填料的情况下,发现了三分量复合材料(由CF,Nanofillers和PCBT矩阵组成)。有趣的是,充满MWCNT和GNP填充和GNP的三组分复合材料之间的表面电阻率差异很小。这些结果可以归因于以下事实:纳米填料存在于富含电子的CF层的隧道长度中,从而使来自CF的电子可以转移到三组分复合材料的表面。因此,可以将开发的三组分复合材料用于需要导电特性的应用,例如静电耗散(
电化学生物传感器依赖于因固定的生物学识别元件与分析物(例如ssDNA/RNA-SSDNA,APTAMER-抗原/蛋白质,抗体 - 抗体 - 抗体 - 抗原抗原和全细胞抗原/蛋白质/蛋白质)之间的分析,依赖于可测量的氧化还原电流的变化。在其中,DNA杂交涉及ssDNA/ RNA之间的相互作用及其互补靶序列,被广泛用于电化学感测中,以检测特异性c DNA序列。对DNA探测器的互补靶标高度可及性,用于DNA杂交的电极表面在增强电化学DNA杂交检测方面起着至关重要的作用。除了取决于杂交过程的最佳条件的改善外,还需要考虑用于固定和杂交的感应层。良好的感应层可以增强生物传感器电化学信号的固定化和DNA杂交。许多研究通过使用纳米材料(例如多壁碳纳米管(MWCNT),11个氧化锌纳米颗粒,11个金纳米颗粒,12
在本工作中,开发了一种使用差异脉冲伏安法技术的伏安法,用于评估抗染料和镇痛药,乙酰氨基酚。制备并表征CuO纳米颗粒。使用了用CuO纳米颗粒(Cuonps)和多壁碳纳米管(MWCNT)制造的玻璃碳电极(GCE)。修饰的电极通过在磷酸盐缓冲液中引入阴离子表面活性剂硫酸钠,显示出改善的阳极峰电流。在生理pH值为7.4的情况下研究了支撑电解质的pH,纳米颗粒悬浮液的量和表面活性剂浓度的影响。使用差异脉冲伏安法,制造的电极显示了对乙酰氨基酚浓度的线性动态范围。从校准图中,计算出的检测极限为5.06 nm,定量极限为16.88 nm。该方法在一天的日期和盘中也测试了其可重现性和测定。开发的过程是有效地应用的,以检测给婴儿施用的小儿口服悬浮液中的对乙酰氨基酚。
摘要:近年来,碳纳米管(CNT)已作为材料出现,这些材料经常用于制备具有导电或高级介电特性的聚合物纳米复合材料,因为它们的独特特性(包括高温和电导率),包括高度和稳健的材料,具有很高的长度至直径比例。但是,在使用这些材料的聚合物纳米复合材料制备过程中,遇到了一些问题。主要问题之一是,在准备这些导电材料或将它们添加到聚合物中后,由于它们的导电结构,它们倾向于聚集,形成团聚。因此,在这项研究中,首先,多壁碳纳米管(MWCNT)用多苯胺(PANI)的导电形式(随后,聚(Dimethyl Siloxane)(PDMS)聚合物聚合物纳米复合膜功能化,具有不同浓度的多型多壁碳Nanotubes的浓度。然后,表征了膜的结构,形态,电和介电特性。仅添加了1.5%的PANI-CNT,在1 Hz时,PDMS的介电常数增加了47倍。此处介绍的介电膜可用于电容器,柔性电子,介电弹性体和人造肌肉应用。关键字:碳纳米管(CNTS),导电聚合物,介电,聚苯胺(PANI),聚合物纳米复合材料,聚(二甲基Siloxane)(PDMS)
神经形态计算,又称受脑启发的计算,由于其构建模块能够同时记忆和处理数据,因此能耗较低。[2] 目前,人工神经网络在图像识别、[3] 音频识别、[4] 蛋白质结构揭示和材料发现等复杂的计算机器学习任务中展现出优势。[5] 这些机器学习任务依赖于大量数据和高速数据分析。因此,与传统的冯·诺依曼架构相比,模仿生物大脑基本要素——神经元和突触的受脑启发的计算架构正在成为复杂机器学习任务的计算解决方案。在实现神经形态计算的元器件中,可以作为光电神经形态计算机构建模块的光电子器件需要新型材料来制作电路级和纳米级的器件。碳纳米管 (CNT) 因其优异的机械和电学性能而常用于电子设备。[6] 与以单层或多层膜形式用于设备的二维石墨烯材料不同,一维 CNT 在电路级和纳米级设备应用中具有更好的潜力。作为一种具有高载流子迁移率的电气材料,CNT 用于构建场效应晶体管和计算机。[7] 尽管 CNT(包括多壁 CNT (MWCNT))具有优异的电学性能,但它们对光的响应较弱,不适合
复合材料的力学性能并不令人满意,最初认为是由于Al层和Ag基体之间的相互扩散所致[22]。2011年,Gogotsi和Barsoum[23-24]合作通过从母体Ti3AlC2中选择性刻蚀掉Al原子平面,制备出一种具有二维结构的新型碳化物材料(Ti3C2Tx),称为MXenes。目前,Ti3C2Tx已受到许多应用领域的广泛关注[25-29]。Ti3C2Tx具有大的比表面积、良好的电导性、导热性和亲水性[30],是一种很有前途的导电复合材料增强体。具体来说,Ti3C2TX 已展示出其作为聚合物(PVA、PAM、PEI、PAN 等)、陶瓷(MoS2、TiO2 等)和碳材料(CNT、MWCNT、CNFs 等)复合材料添加剂的潜力[31]。因此,导电 Ti3C2TX 有望增强 Ag 基体成为一种新型电接触材料。本研究探索了 MXenes 在电接触材料中的应用。采用粉末冶金法制备了 Ti3C2TX 增强 Ag 基复合材料,研究了其电阻率、硬度、机械加工性、拉伸强度、抗电弧侵蚀等综合性能,并与 Ti3AlC2 陶瓷增强 Ag 基复合材料进行了比较。对两类样品性能差异的机理进行了分析和总结。研究结果将为今后新一代环保型银陶瓷复合电接触材料的设计与制备提供重要数据。
摘要:基于多吡咯(PPY)的纳米复合材料对科学界引起了极大的兴趣,因为它们在设计最先进的工业应用方面有用,例如燃料电池,催化剂和传感器,能量设备,尤其是电池。但是,这些材料的商业化尚未达到令人满意的实施水平。为多种电池应用设计和合成基于PPY的复合材料的设计和合成需要更多的研究。由于对环境友好,成本效益和可持续能源的需求不断上升,电池应用是解决能源危机的重要解决方案,它利用了合适的材料(例如基于PPY的复合材料)。在导电聚合物中,PPY被认为是一类重要的材料,因为它们的合成易度,低成本,环保性质等。在这种情况下,由于其纳米结构特性和独特的形态形态,基于PPY的纳米复合材料可能非常有前途,这对于它们在电池应用中的应用至关重要。基于PPY的纳米复合材料的此类特征使它们对于下一代电极材料特别有希望。但是,用于电池应用的适当基于PPY的纳米复合材料的设计和制造仍然是一个挑战的研究领域。本评论论文介绍了当前用于电池应用中基于PPY的复合材料以及其形态形态的进展。我们在这里讨论了在合成不同的基于PPY的复合材料的最新进展,包括PPY/S,PPY/MNOX,MWCNT/PPY,V 2 O 5/PPY,CL-DOPED PPY/RGO和Fe/α-MNO-MNO 2 @pppy Cosies,通过聚合使用多种电池应用。本评论中提出的见解旨在为电池技术中基于PPY的复合材料的未来开发提供全面的参考。
摘要:短期电子设备的不断增长固有地导致大量有问题的废物,这构成了环境污染的风险,危害人类健康并引起社会经济问题。因此,为了减轻这些负面影响,我们的普遍兴趣是将传统材料(聚合物和金属)替换为电子设备中的传统材料(聚合物和金属),并在可能的情况下,同时考虑了功能,制造性和成本的各个方面。在这项研究中,我们探索了可生物降解的生物塑料的使用,例如聚乳酸(PLA),与多羟基丁酸(PHB)(PHB)(PHB)以及与Pyrolyzed的木质素(PL)以及多壁处理的碳nan型(My naneS)(梅尔氏含量)相结合。电子组件,包括等离子体处理,浸入涂料,喷墨和丝网印刷,以及热混合,挤出和成型。我们表明,经过短暂的氩等离子处理,对热泡PLA-PHB混合纤维的表面进行了短暂的表面处理后,单壁碳纳米管(SWCNTS)的渗透网络(SWCNT)可以通过浸水层沉积至1kΩ /□的薄板电阻,以制造能涂层的电极,以制造能力触摸触摸传感器的电极。我们还证明,作为浮光电介质底物的生物塑料膜适用于通过喷墨和屏幕印刷的手段来沉积SWCNT和AG(分别为1kΩ /□和1Ω /□)的导电微图案(分别为1kΩ /□和1Ω /□),并具有潜在电路板的应用。关键字:生物塑料,复合材料,混合物,热解木质素,电气设备,电极,触摸屏,EMI屏蔽■简介此外,我们以PL和MWCNT为PLA的复合和成型的复合材料是电磁干扰屏蔽材料的优秀候选物,其k频段无线电频率(18.0 - 26.5 GHz)分别屏蔽了高达40和46 db的效果。
摘要:研究粘稠的甘醇二甲醚溶剂可能有助于寻找安全的电解液以促进锂硫 (Li-S) 电池的应用。因此,本文对使用不易燃的四乙二醇二甲醚添加低粘度 1,3-二氧戊环 (DOL) 的电解液进行了彻底研究,以实现可持续的 Li-S 电池。该电解质的特点是低可燃性、约 200°C 的热稳定性、25°C 时离子电导率超过 10 − 3 S cm − 1、Li + 迁移数约为 0.5、电化学稳定窗口从 0 至约 4.4 V vs Li + /Li,Li 剥离沉积过电位为 ∼ 0.02 V。DOL 含量从 5 wt % 逐渐增加到 15 wt % 会提高 Li + 运动的活化能,降低迁移数,稍微限制阳极稳定性,并降低 Li/电解质电阻。该电解质用于 Li − S 电池,其复合材料由硫和多壁碳纳米管以 90:10 的重量比混合而成,利用了优化的集流体。对阴极的结构、热行为和形貌进行了初步研究,并在使用标准电解质的电池中使用。该电池可进行超过 200 次循环,硫负载增加至 5.2 mg cm − 2,电解质/硫 (E/S) 比降低至 6 μ L mg − 1 。随后将上述硫阴极和基于甘醇二甲醚的电解质组合成安全的 Li − S 电池,其循环寿命和输出容量与研究浓度范围内的 DOL 含量相关。关键词:Li − S 电池、甘醇二甲醚电解质、低可燃性、MWCNT、集电器、E/S 比