追踪、检测和定量测量细胞和组织中纳米材料的能力推动了它们在生物医学中的日益广泛应用。开发无标记、高分辨率和高维方法,同时可视化多种细胞类型中的二维材料,从而洞察细胞功能和相互作用及其在组织中的空间定位,这对于将纳米材料转化为临床应用至关重要。过渡金属碳化物、氮化物和碳氮化物 (MXenes) [1,2] 是具有多种结构和成分的新兴二维材料。[3,4] 虽然研究最多的 MXene 是 Ti 3 C 2 ,但已报道了 30 多种化学计量成分和至少 20 种固溶体。这些二维薄片的表面覆盖着功能团,写为 T x 。这些基团主要由 O、OH 和 F 组成,因此具有亲水性,易分散于水和生理介质中。由于大多数 MXenes 已被证明具有生物相容性且无细胞毒性,因此它们被广泛用于
自 2011 年首次合成 MXene 以来,MXene 的安全且可扩展的生产一直是一个重要但难以实现的目标 1 。MXene 是二维纳米材料,通式为 M n+1 X n T z ,其中 M 是早期过渡金属(通常是 Ti、Nb 或 V),X 是碳和/或氮,T z 代表表面终止(例如 -F、-Cl、-OH、-O)。MXene 源自一种称为 MAX 相的母材料,该母材料将 M-X 与来自周期表 13-16 2,3 族的层间 (A) 元素结合在一起。已经合成了 50 多个 MAX 相;但是,只有一些 MAX 相可以通过传统的酸蚀技术剥离成感兴趣的二维 MXene 纳米片。之前的研究大多集中在 Ti 基 MXenes 上。MXene 纳米片可用于储能、催化、EMI 屏蔽、传感器和复合材料 4-10 等一系列应用。高浓度氢氟酸 (HF) 通常用于从 MAX 相中选择性去除 A 层以生产 MXenes。其他方法通常使用盐形成原位 HF 溶液,例如将氟化锂 (LiF) 和盐酸 (HCl) 结合或使用氟化氢铵 (NH 4 )HF 2 1,11 。然而,使用水性氟化物蚀刻剂具有许多固有的风险和挑战。与处理 HF 相关的危害使得 MXene 合成工艺难以扩大到商业水平。酸蚀 MXene 合成路线的另一个缺点是废物管理 12 。此外,传统的 HF 酸蚀技术仅限于少数 MAX 相,因此需要
©2022作者。本文根据创意共享4.0国际许可,允许以任何中等或格式的使用,共享,适应,分发和复制,因为您将适当的信用归功于原始作者和这些作者,并提供了与创意共享许可证的链接,并指出了IFCHANGES的链接。本文章中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非在材料的信用额度中另有指示。如果本文的创意共享许可中不包含材料,并且您的预期使用不受法定法规的允许或超过允许的使用权,则您需要直接从版权所有的人获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
二维 (2D) 过渡金属碳化物(称为 MXenes)自 2011 年以来不断发展,部分原因是它们具有令人印象深刻的高电导率、刚性机械性能和丰富的化学活性表面基团。MXenes 的这些关键特性使它们成为均匀覆盖金属粉末以用于增材制造多功能金属复合材料的有吸引力的候选者。在本研究中,我们报告了一种可调的自组装过程,即使用 1 – 10 wt% 的单层至多层 Ti 3 C 2 T x MXene,在微米级 Al 颗粒上形成纳米厚的 2D MXene 薄片。此外,我们讨论了使用 2D x 射线衍射 (XRD 2 ) 对这些复合材料进行表征,以识别特征性的 Ti 3 C 2 T x 衍射峰。最后,我们使用原位 XRD 2 结合维氏硬度和扫描电子显微镜/能量色散 x 射线光谱法来了解烧结对 Ti 3 C 2 T x 形态的影响以及由此产生的块状复合材料的机械性能。这项研究旨在帮助未来在 MXene-金属复合材料的增材制造方面取得进展,以用于一系列多功能应用。
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/。
摘要:过渡金属碳化物和氮化物(MXenes)由于其受灵活的组成或表面功能团调控影响的高度可调的电子和光学性质而在光电应用领域引起了广泛关注。先前超快光子研究中使用的 Ti 3 C 2 T x MXenes(-F,-OH,=O封端)通常通过通用的氢氟酸(HF)蚀刻策略合成,这可能导致大量缺陷,从而阻碍 Ti 3 C 2 T x 的光电性能。在本文中,受到通过微密集层剥离法(MILD)蚀刻策略制备的 Ti 3 C 2 T x(-F,-OH,=O,-Cl封端)更高的电导率和载流子迁移率的启发,我们采用液相剥离(LPE)方法进一步优化它,以合成纯 Ti 3 C 2 T x 量子点(QDs)用于超快光子学。与在 1550 nm 下运行的其他 QDs 可饱和吸收体 (SA) 器件相比,我们的 SA 器件表现出相对较低的饱和强度 (1.983 GW/cm − 2 ) 和较高的调制深度 (11.6%),从而更容易产生锁模脉冲。在通信波段获得了以 1566.57 nm 为中心波长、基频为 22.78 MHz 的 466 fs 的突出超短脉冲持续时间。考虑到基于这种 Ti 3 C 2 T x QDs 锥形光纤的 SA 是对 Er 3+ 掺杂光纤激光器 (EDFL) 的首次探索,这项工作将为超快光子学的应用开辟一条新途径。
b“ Mxene具有通用公式M 1.33 CT Z的MXENE于2017年首次报道。[6]这些mxenes来自平面内排序的第四纪最大相位,其公式为(m'1.33 m \ xe2 \ x80 \ x9c 0.66)alc。蚀刻后,蚀刻了Al层和少数过渡金属M \ Xe2 \ X80 \ X9D,将其留下了平面内有序的分区的2D纸。By now MXenes are well recognized as performing well as negative electrodes in AASCs, [5a\xe2\x80\x93c,7] because of their high conductivity, excellent hydrophilicity, great tolerance to accom- modate various ions and negative operation potential window in three electrode configurations (e.g., to 1.6 V vs. Ag/AgCl in 21 M KCH 3 COO [8] ).最近,由于其高密度和无效材料的避免,诸如粘合剂,导电剂等,更多的工作集中在基于MXENE的自由层膜上,以实现SCS中的高体积电容(C V)。[9]在先前的报告中,硫酸(H 2 SO 4)一直是选择的电解质。细胞通常达到C S> 300 F G 1或> 1500 F CM 3的高值。[5d,10]但是,与中性水解物相比,H 2 SO 4既安全也不是绿色。进一步的问题是,i)风险“
基于电纺纤维的应变传感器由于网络构建和可量身定制的设计而广泛用于生物监测。但是,循环稳定性差和缺乏多模式仍然是主要问题。在这项研究中,采用了由MXENE,石墨烯纳米片(GNP)和纤维素纳米晶体(CNC)组成的3组分材料系统来解决多模式和敏感性短缺。MXENE和石墨烯纳米片(GNP)之间的杂化协同相互作用提供了高量表因子(400个为100%,在10%菌株时为76.1)。通过形成局部脆性区域,在较低的应变范围内提供了更高的电导率和灵敏度(低应变范围(低检测极限为0.25%,短响应时间为100 ms))。协同,具有较大侧向尺寸的GNP薄片促进了网络连接,易于滑动较大的应变和润滑性。另一方面,CNC粘合剂增强了成分之间的均匀性和界面氢键,从而导致了超过2,000个周期的理想循环能力。使用具有导电性添加剂的聚(苯乙烯丁二烯 - 苯乙烯)(SBS)底物来装饰聚(苯乙烯丁二烯 - 苯乙烯)(SBS)底物,这显着增强了导电涂层的均匀性。通过同时真空辅助过滤,该技术提供了更多的共形和深度纤维装饰,从而促进了多模态和灵敏度。发达的策略被证明可以有效地通过理想的身体整合和成功记录各种身体运动的传感器。
Cheng 等人 [1] 实现了与 Li 0.7 Ti 3 C 2 T 2 相当的容量(1C 电流密度下经过 200 次循环后容量为 100 mAh g −1,电流密度约为 100 mA g −1),而 Wang 等人 [2] 实现了与 ≈ Na 0.5 Ti 3 C 2 T 2 相当的容量(200 mA g −1 电流密度下经过 1000 次循环后容量为 70 mAh g −1,电流密度约为 3C)。隧道电子显微镜(TEM)还显示,在某些情况下可以插入多层 Na,[2] 在原子水平上每个原子级分子式单位可以有一个以上的 Na,即 Na > 1 Ti 3 C 2 T x 。另一方面,Mg 是一种在电池应用中具有挑战性的金属,其扩散速度慢、电解质-电极动力学复杂、质子嵌入和电解质分解问题严重[5–7],在微米级 Ti 3 C 2 T x 上测试时,仅显示出与 Mg 0.004 Ti 3 C 2 T 2 (≈ 1 mAh g − 1,25 次循环) 相当的容量。[3] 使用间隔基增加层间距离 [8] 和/或将 MXene 纳米化 [9,10] 已显示出更高的容量,但很难确定这些容量是由于可逆的 Mg 2 + 嵌入,还是由于表面反应、质子嵌入和/或电解质共嵌入 (如 MgCl + 嵌入的情况)。[5,6,11]
近几年来,电池需求量最大,在移动电子设备、电网和电动汽车中的大规模应用是环保的最新优势 [1- 5]。离子电池需求量最大。与其他具有较长充放电周期和较高能量密度的电池相比,锂离子 (LIB) 是最先进、最稳定的电池技术 [6–9]。钠离子电池 (NIB) 的需求量也很大,因为它们的化学性质相似、存储容量高,而且是地球上最丰富的材料,这使得钠可以与锂竞争。大量实验表明,2D材料表现出高容量[10-14],低开路电压,良好的循环稳定性,其中实验合成的MAX相2D MXenes M n+1 AX n(n=1,2,3..)在电池负极材料中显示出更好的效果,其中M为过渡金属族(Ti,V,Zr,Hf等),A为13-14族元素(Si,Al,Ge,Ga等),X为碳化物或氮化物族[15-21]。其中Ti 3 C 2 报道的容量为410 mAhg -1 Li原子/1C[22]。同时,密度泛函理论(DFT)预测其容量为320 mAh.g -1 。在用卤素基团(F、OH 等)封端后形成 Ti 3 C 2 Li 2 ,锂容量会大幅降低 [23]。最近,通过 Hf 3 [Al(Si)] 4 C 6 固溶体和氢氟酸选择性蚀刻合成了 MXenes Hf 3 C 2