二维过渡金属(TM)碳化物和碳氮化物(称为MXenes)自2011年首次亮相以来,由于其二维层状结构和优异的物理化学性质,在各个应用领域引起了极大关注。[1] MXenes 可以从相应的层状 MAX 相中衍生出来,其结构公式为 M n + 1 AX n(n = 1–3)。[2] MAX 相化合物由过渡金属(M)层与 C 或 N 层(X)交错组成,强的 M X 键进一步通过 III A 或 IV A 族元素(A)的单原子层插入,呈现原子层和六方晶体结构。[3,4] 通常,可以通过优先溶解和提取 MAX 相结构中弱键合的 A 层来获得 MXenes。 [5,6] 在水相中蚀刻和剥离过程中,高反应性的TM表面立即与F、OH和=O等物质连接,得到MXene通式:M n + 1 X n T x (T x 代表表面物质)。[7–9] 基于丰富的表面终端、独特的混合共价键和金属键的层状结构,MXenes表现出有趣的功能性能,如优异的电化学和光学性能、优异的热导率、高电导率和突出的机械特性。[10–13] MXenes的这些性质可以通过改变微观结构、元素组成和表面终端来进一步调节,[14–19] 例如,通过改变M或X元素、合金化M或X层,[20–24] 以及通过使用多元素(M)面外或面内顺序在MXene结构中构造特殊空位。 [23,25–29] 因此,多功能且具有潜在可扩展性的合成技术使 MXene 材料在性能可调的二维材料领域中占据了独特的地位。[30]
组织工程心脏斑块作为心肌梗塞(MI)具有巨大潜力。然而,为了成功地与包含斑块的细胞的天然组织和适当的功能整合,对于这些斑块来说,模仿天然细胞外基质的有序结构和人类心脏的电导性至关重要。在这项研究中,一种可以为人类诱导的多能干细胞衍生的心肌细胞(ICM)提供导电和地形线索的新复合构建体是为心脏组织工程应用开发的。通过使用气溶胶喷气式喷气式飞机在聚乙二醇(PEG)水凝胶上,在细胞水平的分辨率上,通过在聚乙二醇(PEG)水凝胶上进行预设计的模式,在预设计的图案上以3D打印导电钛(Ti 3 c 2 t x)Mxene制造结构,然后与ICMS播种,并在一周内培养一周的cytoxoxitigity。这项工作中提出的结果说明了3D打印Ti 3 C 2 t X MXENE在对齐ICM上的重要作用,而MYH7,SERCA2和TNNT2表达式显着增加,并且具有改善的同步节拍,并进行了传导速度。这项研究表明,3D印刷Ti 3 C 2 t X MXENE可能可用于创建与MI治疗的生理相关的心脏斑块。
钙钛矿太阳能电池 (PSC) 因其高功率转换效率 (PCE) 和低制造成本而备受关注。人们采用了不同的方法来提高 PSC 的 PCE 和稳定性,例如成分工程 [1,2]、载流子传输层改性 [3] 和异质结构 [4]。最近,具有新颖结构的碳基单片钙钛矿太阳能电池 (mPSC) 已经成为以合理成本商业化大面积钙钛矿太阳能电池 (PSC) 最有前途的设计之一。此外,碳基设计无需使用 Spiro-OMeTAD 等空穴传输材料 (HTM)。由于制造成本也较低,因此可以开发出低成本的光伏系统。为了进一步提高性能,采用了加法工程方法。 mPSC 由四层连续层组成,如图 S1(支持信息)所示,包括玻璃/FTO/致密-TiO 2 /介孔-TiO 2 /介孔-ZrO 2 /碳。这些 mPSC 中填充有钙钛矿,从而分别充当吸光层。在这种设计中,钙钛矿同时充当空穴传输层 (HTL) 和吸收层 [5] 。为了提高 mPSC 的性能,人们探索了不同的技术,包括反溶剂优化 [6] 、后处理 [7] 和添加剂工程 [8] 。从上面提到的方法来看,添加剂工程非常有前景且易于使用,并且在众多
摘要:电导聚合物和MXENES的多功能和独家电子,光学,物理化学,电化学和机械特征都激发了全球科学家在使用这些材料设计创新的高性能存储系统方面采取严重的动力,以这些材料为机械灵活的电子技术来解决不断增长的技术技术,以解决各种材料的需求。然而,两种材料都经历了一些严重的实际限制,这使科学界以Mxenes/pani纳米复合材料的形式进行了必要的修改,并具有合适的成分,从而实质上可以恢复其代表性特征,但可以成功地抑制其功能缺陷。因此,在当前概述中,MXENES/PANI纳米复合材料制造的不同策略是为高级超级电容器制造的,特别提及合成即兴创作所带来的必要的形态修饰,从而导致了卓越的电容性,电子电荷运输以及结构性以及还认识到并进行了比较。这样的分析将有目的地有助于调整整体机械和电化学响应,以尽快对更智能和高度柔性的微电子进行策划。
气候变化被认为是全球最大的挑战,在其最前沿是能源的话题。虽然非常重要,但有关能源的辩论已成为一种正常性。与能源储能应用的材料合成相关领域也在增长,以及对可再生能源的工业电气化需求。水性超级电容器是一种能够提供高功率密度的储能设备,同时在环境友好的媒体中保持长期环环性。但是,他们的挑战包括在能量密度,安全性和低成本的电极生产方面保持较高的表现。mxene是由H,OH和F组终止的二维过渡金属碳化物/氮化物的家族。该材料表现出与其3D母体材料最大相位的能源应用相关的出色物理和化学特性。自2011年发现以来,由于其高电导率(20,000 s.cm -1)和可以达到900 FCM -3的体积功能,MXENE(例如Ti 3 C 2 T Z)在储能领域得到了广泛研究。但是,报告的MXENE的合成过程充满了耗时的危险程序。本文的第一部分提出了一种新的Ti 3 C 2 T Z Mxene合成的创新方法,其中MXENE在几毫秒内合成了MXENE,借助30 MHz频率表面声波(SAW)和0.05m的LIF。在硫酸电解质中研究了MO 1.33 CT Z。MO 1.33 CT ZTi 3 Alc 2 Max相中的铝元素被所谓的“局部HF”蚀刻,并将粉末转化为2d Ti 3 C 2 T Z。该方法显示了与先前报道的合成技术相当的MXENE,如该材料的电型性能所证明的那样。该论文的第二部分着重于研究相对较新的MXENE家族在水溶液中产生的I-含量的电化学性能。i -mxene在2017年报道,具有化学式MO 1.33 ct z,是平面内化学有序化学蚀刻的产物(MO 2/3 SC 1/3)2 ALC I -MAX相。该电解质为电极电位窗口和电容设置了极限,因此,使用后处理方案来增强电化学性能。
采用一步水热法制备碳化钛/还原氧化石墨烯 (Ti 3 C 2 T z /rGO) 凝胶。该凝胶具有高度多孔结构,表面积为 ~224 m 2 /g,平均孔径为 ~3.6 nm。反应前体中 GO 和 Ti 3 C 2 T z 纳米片的含量不同,可产生不同的微观结构。Ti 3 C 2 T z /rGO 凝胶的超级电容器性能随成分而发生显著变化。比电容最初随 Ti 3 C 2 T z 含量的增加而增加,但在高 Ti 3 C 2 T z 含量下无法形成凝胶。此外,电容保持率随 Ti 3 C 2 T z 含量的增加而降低。与纯 rGO 和 Ti 3 C 2 T z 相比,Ti 3 C 2 T z /rGO 凝胶电极表现出增强的超级电容器性能,具有高电位窗口 (1.5 V) 和大比电容 (920 F/g)。 rGO 的 EDLC 与 Ti 3 C 2 T z 的氧化还原电容的协同效应是超级电容器性能增强的原因。用 Ti 3 C 2 T z /rGO 构建了一个对称双电极超级电容器单元,其面积电容非常高(158 mF/cm 2 ),能量密度大(~31.5 μW h/cm 2
南卡罗来纳大学,哥伦比亚分校,哥伦比亚大学,美国大街300号,美国SC 29208,美国B化学工程系,南卡罗来纳大学,哥伦比亚大学,哥伦比亚大学,美国SC 29208,美国化学与生物工程系,伦斯多利教授工程师,伦斯勒理工学院,纽约州TROY,纽约市DA180 Aliment Alokem,K. Buk-Gu,Daegu 41566,朝鲜共和国e公民与建筑工程学院,桑格克万大学,2066年,Seobu-Ro,Jangan-16,GU,Suwon,Suwon,Gyeonggi-Do 16419美国南卡罗来纳州南卡罗来纳大学生物医学工程计划,美国南卡罗来纳州29208,美国南卡罗来纳大学,哥伦比亚分校,哥伦比亚大学,美国大街300号,美国SC 29208,美国B化学工程系,南卡罗来纳大学,哥伦比亚大学,哥伦比亚大学,美国SC 29208,美国化学与生物工程系,伦斯多利教授工程师,伦斯勒理工学院,纽约州TROY,纽约市DA180 Aliment Alokem,K. Buk-Gu,Daegu 41566,朝鲜共和国e公民与建筑工程学院,桑格克万大学,2066年,Seobu-Ro,Jangan-16,GU,Suwon,Suwon,Gyeonggi-Do 16419美国南卡罗来纳州南卡罗来纳大学生物医学工程计划,美国南卡罗来纳州29208,美国南卡罗来纳大学,哥伦比亚分校,哥伦比亚大学,美国大街300号,美国SC 29208,美国B化学工程系,南卡罗来纳大学,哥伦比亚大学,哥伦比亚大学,美国SC 29208,美国化学与生物工程系,伦斯多利教授工程师,伦斯勒理工学院,纽约州TROY,纽约市DA180 Aliment Alokem,K. Buk-Gu,Daegu 41566,朝鲜共和国e公民与建筑工程学院,桑格克万大学,2066年,Seobu-Ro,Jangan-16,GU,Suwon,Suwon,Gyeonggi-Do 16419美国南卡罗来纳州南卡罗来纳大学生物医学工程计划,美国南卡罗来纳州29208,美国
2D 纳米材料被定义为厚度为一个或几个原子的材料(图 1),其横向尺寸在纳米到微米尺度 1 。由于其出色的性能和多种新化学性质,它们为储能领域开辟了新前景 1 。在储能方面特别受关注的材料家族包括石墨烯 2、3、过渡金属氧化物 (TMO) 1、2D 过渡金属二硫属化物 (TMD) 4、5 和 MXenes(2011 年发现的一类 2D 过渡金属碳化物和氮化物)6。2D 纳米材料在超级电容器和高倍率电池中显示出巨大的应用潜力。2D 纳米材料具有固有的高表面积,可以进行化学功能化,具有离子嵌入能力,并且与最先进的传统电池材料不同,可以以惊人的倍率运行。此外,二维纳米材料机械强度高 6 ,堆积密度高 7, 8 ,是可穿戴电子产品中柔性、微型、超薄储能装置的理想选择。这是本项目追求的终极应用。
近年来,通过缩减包括芯片互连的各种设备组件来缩放各种设备组件,已经满足了对集成电路较高性能的增长需求。然而,随着在微型互连中使用常规金属(例如铜)变得越来越具有挑战性,因此对具有高电导率和分解电流密度的替代互连材料的兴趣越来越大。在这里,我们证明了单层Ti 3 C 2 t X的分解电流密度非常高,这是一种二维过渡金属碳化物(称为MXENES)的材料,它超过了铜和其他常规金属的这种特性。在Ti 3 C 2 t X中发现的高电导率和分解电流密度的显着组合扩展了MXENES对微电子的潜在应用的令人印象深刻的列表,并保证对大型MXENE家族的其他材料进行研究,其中一些可能具有更好的特征。
抽象MXENE是最近出现的多方面二维(2D)材料,由表面改性的碳化物组成,提供了其柔韧性和可变成分。它们由早期过渡金属(M)的层组成,与N层的碳或氮层(表示为X),并用表面官能团(表示为T X / T Z)终止,并用M n + 1 x n t x的一般公式,其中n = 1-3。通常,MXENE具有特性的独家组合,其中包括高电导率,良好的机械稳定性和出色的光学性能。MXENES还具有良好的生物逻辑特性,具有高表面积的药物负荷/递送,生物相容性的良好亲水性以及用于计算机断层扫描(CT)扫描和磁共振成像(MRI)的其他电子相关性能(MRI)。由于具有吸引力的物理化学和生物相容性特性,新型的2D材料吸引了对生物医学和生物技术应用的起义兴趣。尽管最近探索了MXENES在生物医学中的某些潜在应用,但在生物医学工程和生物医学的角度使用的MXENE类型仅限于Mxenes的少数Mxene和tantalum Carbide家族。本评论的论文旨在概述MXENES的结构组织,不同的自上而下和自下而上的MXENES合成方法,无论它们是基于氟还是不含氟的蚀刻方法来产生生物相容性的MXENES。还讨论了MXENE的抗菌活性和MXENES在损害细胞膜中的机理。MXENES,以增强生物降解性并降低材料的细胞毒性,用于生物传感,癌症疗法,药物输送和生物成像应用。对生物医疗设备中MXENE部署MXENE的体内应用,陷阱和未来前景面临的一些挑战已被揭露。总的来说,这篇综述将MXENES的当前进步和前景视为实现这一2D纳米材料作为多功能生物学工具的目前进步和前景。