2D 纳米材料被定义为厚度为一个或几个原子的材料(图 1),其横向尺寸在纳米到微米尺度 1 。由于其出色的性能和多种新化学性质,它们为储能领域开辟了新前景 1 。在储能方面特别受关注的材料家族包括石墨烯 2、3、过渡金属氧化物 (TMO) 1、2D 过渡金属二硫属化物 (TMD) 4、5 和 MXenes(2011 年发现的一类 2D 过渡金属碳化物和氮化物)6。2D 纳米材料在超级电容器和高倍率电池中显示出巨大的应用潜力。2D 纳米材料具有固有的高表面积,可以进行化学功能化,具有离子嵌入能力,并且与最先进的传统电池材料不同,可以以惊人的倍率运行。此外,二维纳米材料机械强度高 6 ,堆积密度高 7, 8 ,是可穿戴电子产品中柔性、微型、超薄储能装置的理想选择。这是本项目追求的终极应用。
原子锁定硅中的位错,从而提高机械强度。[2,3] 用具有不同氧化态的各种元素掺杂硅的影响已得到充分证实。在碳材料中,通过化学取代可以带来物理和化学性质的显著变化。已知碳可以形成复合材料,并且可以掺杂各种材料,包括聚合物、金属氧化物、金属硫化物、金属氮化物、MXenes、金属有机骨架 (MOF) 等。[4–13] 然而,已经证明,用杂原子掺杂碳质材料可以改善各种性能,这是由于导电性增强、缺陷引入、孔隙率增强以及层间距离调整。近年来,一些报告强调了碳质材料在各种应用方面的进展,包括能源应用、传感应用和光伏应用。例如,2013 年,Thomas 和 Paraknowitsch 回顾了碳质材料的设计,并强调了它们在能源设备中的应用。[14] 根据该报告,S 和 P 掺杂导致碳基质中原子尺寸变化,引起结构扭曲和电荷密度改变
作为迅速扩展的2D材料家族,MXENES最近引起了人们的关注。通过开发一种涂层方法,该方法可实现无传输和逐层膜涂层,研究了Ti 3 C 2 t x mxeneFim的非线性光吸收(NOA)。使用Z扫描技术,MXENEFILM的NOA在≈800nm处的特征。结果表明,随着层数从5增加到30的增加,从反向吸收吸收(RSA)转变为可饱和吸收(SA)。值得注意的是,非线性吸收系数的β变化从≈7.1310 2 cm GW 1到在此范围内的2.69 10 2 cm GW 1。也表征了MXENEFIM的功率依赖性NOA,并且观察到β的趋势下降以增加激光强度。最后,在≈1550nm处的2D mxene纤维的NOA的特征是将它们整合到氮化硅波导上,在其中观察到薄膜的SA行为,包括5和10层MXENE,与在≈800nm处观察到的RSA相反。这些结果揭示了2D MXENEFM的有趣的非线性光学性质,突出了它们的多功能性和实现高性能非线性光子设备的潜力。
最近发现二维(2D)过渡金属碳化物和硝酸盐(MXENES)由于其独特的电气,光学和化学性质而受到了极大的关注。这些非凡的特性使它们成为各种应用,包括通过光热效应的多模式肿瘤疗法的合适候选者。在这项工作中,我们演示了如何通过应用连续的超声处理过程来减少1-5 µm大的Ti 3 C 2单层MXENE片。不同的微观技术已被用来可视化超大单层Ti 3 C 2纳米片的形成。所制备的Mxene纳米片在水和乙醇中表现出良好的溶解度。此外,使用(3-氨基丙基)三乙氧基硅烷(Aptes)和聚(3,4-乙二烯二苯乙烯)聚苯乙烯磺酸盐(PEDOT:PSS)用于MXENE纳米片的表面修饰,以打开随后的抗体生物套件的可能性。PEDOT:PSS改善了纳米片的光热转化性能,这是通过在辐射时从48.6ºC增加到58.1ºC的记录,提高了808 nm波长激光器的温度。进一步的体内和体外研究将需要优化Ti 3 C 2纳米片的光热特性。
更多类似石墨烯的2D系统,例如Xenes和Xanes(其中x =硅,德语等),4 - 6个过渡金属二分法(例如,MOS 2,WS 2,Mose 2,WSE 2),7,8六角硼硝酸盐,9 mxenes(例如,过渡金属碳化物和硝酸盐),10个黑磷,11和2d钙钛矿12,13已合成。其中,硅纳米片由于与当前基于SI的纳米技术的预期兼容性而引起了极大的关注。硅纳米片在石墨烯类似硅烯之间存在分歧,该石墨烯类似硅由混合的SP 2 /SP 3-杂化硅原子组成,14和氢末端的石墨烯的类似物,所谓的硅烷,SP 3-氢化硅原子。15作为SP 3-杂交对硅的有利,16硅不稳定,因此仅在底物上外恋生长,例如,AG(111)或IR(111)。17 - 22通过在低温下用浓盐酸从ZINTL二相钙(CASI 2)从ZINTL相(CASI 2)的钙阳离子去钙阳离子来制备更稳定的硅硅烷(氢终止的硅质,SINS-H)。6 Sins-H具有独特的电子,机械和光学特性。根据理论研究,SINS-H是一种半导体材料23,具有应变带隙,24,25,而其原子
材料科学领域只见证了极少数具有彻底改变我们世界的潜力的发现和技术进步,而二维 (2D) 材料的出现是其中的佼佼者。2004 年,石墨烯从石墨中分离出来,这种材料的特点是原子级薄度,主要受表面效应的影响,开辟了材料科学的新领域。二维材料的研究,包括石墨烯及其对应物,如硅烯、锗烯、磷烯,以及过渡金属二硫属化物 (TMD)、MXenes 和其他层状半导体,已经发展成为一项全球性的努力,涉及物理、化学、工程和生物等不同领域的数千名研究人员。二维材料的独特之处在于其层状结构,包括强的平面内化学键和层间弱的平面外耦合。这种结构排列允许单个原子层分裂,当材料厚度减小到单层或几层时,电子特性会发生非凡的变化。这种现象被称为量子限制,它赋予二维材料独特且往往出乎意料的特性,推动了对各个领域新应用和创新途径的探索。随着研究人员深入研究这些层状材料的复杂性,越来越明显的是,它们有望开启前所未有的可能性,为科学技术的突破性进步铺平道路。
MXenes 作为储能材料具有独特的特性;然而,有限的层间距离和持续循环下的结构稳定性限制了它们的应用。在这里,我们开发了一种独特的方法,涉及将 Nb 原子掺入 MXene(Ti 3 C 2 )中,以增强其实现更高离子存储和更长时间稳定性的能力。使用密度泛函理论进行了计算分析,从原子细节上解释了材料结构、电子结构、能带结构和态密度。Nb 掺杂的 MXene 显示出 442.7 F/g 的良好电荷存储容量,这使其可应用于超级电容器。X 射线衍射(XRD)表明在 MXene 中 Nb 掺杂后 c 晶格参数增强(从 19.2A ◦ 到 23.4A ◦ ),这显示了引入具有较大离子半径的元素(Nb)的效果。此外,带隙从原始 MXene 的 0.9 eV 变为 Nb 掺杂 MXene 的 0.1 eV,这表明后者由于金属性质更强而具有导电性增加的特征,这与实验结果相符。这项工作不仅展示了 MXene 中的掺杂效应,还有助于解释物理参数变化所涉及的现象,推动了基于二维材料的储能领域的发展。
作为候选材料,最近已经开发出采用真空沉积法在柔性基底上制造的电池;然而,使用昂贵的阴极材料、基于物理气相沉积的电解质以及面积有限的制造工艺使装置结构庞大且过于复杂。[9–11] 厚基底会导致有限的灵活性(大弯曲半径)、降低的长期循环性能和高工艺成本,这与皮肤兼容电子产品的要求相矛盾。[6] 由于这些缺点,迫切需要低成本、大面积、高产量的印刷微型超级电容器(μ SC)。这导致了薄的平面装置的发展,它提供高功率密度(快速充电,以秒为单位)和循环能力(超过 10 000 次循环),具有易于制造和可扩展、直接的溶液处理方法的优点。[12,13] 使用不同的印刷方法,由各种碳同素异形体、导电聚合物和 Mxenes 印刷的 μ SC 被制造为电极。 [13–16] 超薄电化学储能装置采用聚酰亚胺 [17]、聚对二甲苯 C [18] 或带有载体支撑的 PET 箔 [19] 等薄基板。与无机类似物相比,导电聚合物通常被认为较差,因为其能量输送适中、化学稳定性高、循环性有限。然而,低成本印刷到柔性基板上或聚合成支架的可能性允许制造具有良好电容循环保持力的多孔电极。[20,21]
mxene作为一种不同的储能系统的电极材料进行了研究。实验结果表明,MXENES作为阳极材料具有出色的循环性能,尤其是在较大的电流密度下。但是,可逆能力相对较低,这是满足工业应用需求的重要障碍。这项工作通过原位方法合成了N掺杂的石墨烯样碳(NGC)插入的Ti 3 C 2 t X(NGC-Ti 3 C 2 t X)van der waals异质结构通过原位方法。所制备的NGC-TI 3 C 2 T X van der waals异质结构用作钠离子和锂离子电池电极。对于钠离子电池,在20 mA g-1的特定电流中实现305 mAh g-1的可逆特异性容量,比Ti 3 C 2 t X X X X的特定电流高2.3倍。对于锂离子电池,在20 mA g-1的特定电流下,可逆能力为400 mAh g-1,是Ti 3 C 2 t X X的1.5倍。由NGC-TI 3 C 2 T X制成的钠离子和锂离子电池都显示出高循环稳定性。理论计算还验证了NGC-TI 3 C 2 O 2系统中电池容量的显着改善,这归因于NGC边缘状态下工作离子的附加吸附。这项工作是一种创新的方式,可以合成新的范德华异质结构,并提供了一条新的途径,以显着提高电化学性能。
等离子体学是凝聚态物理学中的一个技术前沿术语,它描述表面等离子体共振,其中表面等离子体是限制在电介质-金属界面的集体电子振荡,这些集体激发与光相互作用表现出显著的等离子体特性。表面等离子体基于纳米材料及其结构;因此,半导体、金属和二维 (2D) 纳米材料由于独特的限制而表现出不同的等离子体效应。二维超薄材料表征和材料制造方面的最新技术突破因其非凡的等离子体增强特性而引起了材料行业的兴趣。二维等离子体材料由于其超薄和强发光特性而在光子和光电子器件应用方面具有巨大潜力,例如:光伏、透明电极和光电探测器。此外,二维等离子体材料的光驱动反应对未来能源的产生是环境友好的,对气候友好的,这使得它们在能源应用方面极具吸引力。本章旨在介绍等离子体二维材料(石墨烯、氧化石墨烯、六方氮化硼、氮族元素、MXenes、金属氧化物和非金属)的最新进展及其应用潜力,并分为几个部分来阐述最近的理论和实验发展以及光子学和储能行业的潜力。