Prerequisites These topics will be discussed with you in the interviews (Resources applicants can visit or study before interview) Probability & Statistics for Machine Learning & Data Science ( https://www.coursera.org/learn/machine-learning-probability-and-statistics ) Mathematics (Calculus and Linear Algebra): MIT OpenCourseWare (Calculus – Linear Algebra) Data Structures and算法(https://www.coursera.org/specializations/data-sonstructures-algorithms)数据库和SQL:https://maharatech.gov.gov.eg/course/course/view.php?
Sommersester/2025夏季学期,本课程将微观学技术与现代机器学习方法结合在一起,为学生提供高级工具来处理大型数据集并进行严格的因果分析。研讨会分为教学部分和研讨会部分。在教学部分中,学生将参加四个半天的课程。该课程将涵盖基本技术,例如可变选择和交叉验证,以及山脊,套索和弹性网等收缩方法。我们还将探索分类方法,包括Logit和K-Nearest邻居(K-NN)。此外,该课程将解决在因果推理环境中使用许多控件和仪器变量的方法,从而为学生提供工具,以提供更强大的因果关系估计。在第二部分中,学生将撰写有关理论主题的研讨会论文,课程中讨论的方法的应用或其他相关的机器学习方法。Studiiengang:程序:
回顾历史,机器学习与人工智能有着很大的关系,人工智能是利用计算机模拟人脑的功能。在人工智能发展的早期,计算机科学家将特定领域的知识编程来代替人类完成任务。这种早期的做法只能让计算机执行预先设计好的流程,与实际的人脑相比,计算机并没有自我学习的能力。1959年,计算机科学家Arthur Samuel提出了机器学习的概念,让计算机拥有了无需明确编程就能学习的能力。Arthur Samuel首次使用机器学习训练IBM计算机下棋,这一举动为机器学习研究领域带来了不少关注。然而,由于硬件和计算机技术的限制,机器学习并没有得到预期的发展,大量资金在此期间被撤回。1997年,由机器学习训练的国际象棋程序“深蓝”击败了国际象棋大师Garry Kasparov,这一里程碑事件让机器学习技术重新受到关注
当前的学习模型通常难以实现像人类一样的系统泛化,特别是在从有限的数据中学习组合规则并将它们推断为新的组合时。我们引入了神经符号递归机(NSR),其核心是根基符号系统(GSS),允许直接从训练数据中产生组合语法和语义。NSR采用模块化设计,集成了神经感知、句法分析和语义推理。这些组件通过一种新颖的演绎-溯因算法进行协同训练。我们的研究结果表明,NSR的设计充满了等变性和组合性的归纳偏差,使其具有良好的表现力,可以熟练地处理各种序列到序列任务并实现无与伦比的系统泛化。我们在四个旨在探测系统泛化能力的具有挑战性的基准上评估了NSR的有效性:用于语义分析的SCAN、用于字符串操作的PCFG、用于算术推理的HINT和组合机器翻译任务。结果证实了 NSR 在泛化和可转移性方面优于当代神经和混合模型。