参考文献 1] Klaus Greff 等人。“LSTM:搜索空间漫游。”IEEE 神经网络和学习系统学报,28 (2015): 2222-2232。 https://doi.org/10.1109/tnnls.2016.2582924。[2] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A.(2014)。更深入地了解卷积。2015 IEEE 计算机视觉和模式识别会议 (CVPR),1-9。 https://doi.org/10.1109/CVPR.2015.7298594。[3] Lee, J., Jun, S., Cho, Y., Lee, H., Kim, G., Seo, J., & Kim, N. (2017)。医学成像中的深度学习:概述。韩国放射学杂志,18,570 - 584。 https://doi.org/10.3348/kjr.2017.18.4.570。[4] Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., & Burnaev, E. (2020)。NAS-Bench-NLP:自然语言处理的神经架构搜索基准。IEEE Access,PP,1-1。https://doi.org/10.1109/access.2022.3169897。[5] Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W., & Boddeti, V. (2019)。用于图像分类的深度卷积神经网络的多目标进化设计。IEEE Transactions on Evolutionary Computation,25,277-291。https://doi.org/10.1109/TEVC.2020.3024708。[6] Zhang, T., Lei, C., Zhang, Z., Meng, X., & Chen, C. (2021)。AS-NAS:用于深度学习的具有强化进化算法的自适应可扩展神经架构搜索。IEEE 进化计算学报,25,830-841。 https://doi.org/10.1109/TEVC.2021.3061466。[7] Sun, Y., Sun, X., Fang, Y., Yen, G., & Liu, Y.(2020)。一种用于进化神经架构搜索算法性能预测器的新型训练协议。IEEE 进化计算学报,25,524-536。https://doi.org/10.1109/TEVC.2021.3055076。[8] Verma, M., Sinha, P., Goyal, K., Verma, A., & Susan, S. (2019)。一种用于爬山领域的神经架构搜索的新框架。2019 IEEE 第二届人工智能与知识工程国际会议 (AIKE),1-8。https://doi.org/10.1109/AIKE.2019.00009。[9] Zhang, H., Jin, Y., Cheng, R., & Hao, K. (2020)。通过采样训练和节点继承实现注意力卷积网络的有效进化搜索。IEEE
以下论文讨论了使用微重力模拟器研究微重力效应的可能方法:随机定位机。此外,该研究旨在验证生物学和机械水平上的RPM性能。测试了RPM,以确保其准确模拟适合平面物的微重力环境,并为了找到最能模拟这种情况的机器的特性。随机定位机的研究和验证对于继续使用至关重要。它将RPM建立为可靠的微重力模拟器,为未来的研究和严格研究为微重力领域提供了科学基础。
中风是全球第二大死亡原因,对个人和国家医疗保健系统来说仍然是一个重要的健康负担。我们的项目将机器学习原理应用于大量现有数据集,以根据潜在可改变的风险因素有效地预测中风。然后,它打算开发应用程序,根据每个用户的中风风险水平提供个性化警告,并提供有关中风风险因素的生活方式纠正信息。
摘要:焦虑症 (AD) 是一种主要的精神疾病。然而,由于 AD 的症状和混杂因素很多,很难诊断,患者长期得不到治疗。因此,研究人员对非侵入性生物信号的兴趣日益浓厚,例如脑电图 (EEG)、心电图 (ECG)、皮肤电反应 (EDA) 和呼吸 (RSP)。将机器学习应用于这些信号使临床医生能够识别焦虑模式并区分病人和健康人。此外,已经开发了具有多种不同生物信号的模型,以提高准确性和便利性。本文回顾并总结了 2012 年至 2022 年发表的将不同的机器学习算法应用于各种生物信号的研究。在此过程中,它提供了当前发展优缺点的观点,以指导未来焦虑检测的进步。具体而言,这篇文献综述表明,对于样本量为 10 至 102 名参与者的研究,测量准确度在 55% 至 98% 之间,非常有希望。平均而言,仅使用 EEG 的研究似乎获得了最佳性能,但使用 EDA、RSP 和心率可获得最准确的结果。随机森林和支持向量机被发现是广泛使用的机器学习方法,只要进行了特征选择,它们就会产生良好的结果。神经网络也被广泛使用,并提供良好的准确性,其优点是不需要进行特征选择。这篇综述还评论了模态的有效组合以及检测焦虑的不同模型的成功。
描述此研究生级课程的重点是机器学习与计算生物学之间的令人兴奋的交集。我们将涵盖现代机器学习技术,包括受监督和无监督的学习,特征选择,概率建模,图形模型,深度学习等。学生将学习这些方法的基本原则,基本的数学和实施细节。通过阅读和批评发表的研究论文,学生将学习机器学习方法在基因组学,单细胞分析,结构生物学和系统生物学中的各种生物学问题上的应用。学生还将通过深入的编程作业使用Pytorch学习使用Pytorch来实施深度学习模型。在最终项目中,学生将通过以生物学问题探索这些概念来应用他们所学的知识,以充满热情。
模具行业不断要求先进的技术来提高模具在其生命周期内的性能。直接金属沉积 (DMD) 为模具翻新提供了关键机会。然而,通过 DMD 的典型刀具路径由交替的平滑段和尖角组成。在这里,能量密度和粉末数量的波动通常会导致工具恢复部分出现严重的几何偏差。这项工作提出了一种基于机器学习的新型预测方法,该方法使用与工艺参数和执行的几何形状相关的特征来表征路径。该方法的优势已在刀具路径上得到验证,刀具路径通常表征工具翻新过程。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
药物发现的每个阶段。其应用包括靶标识别、分子对接、药代动力学预测、毒性评估和加速药物筛选。这些发现的意义在于有望加快、经济高效且有针对性的药物开发。量子计算和机器学习的结合为精准医疗开辟了新领域,并有可能重塑制药业格局。本文深入探讨了 QML 在药物发现中实施的基本原理、实际案例研究和道德考虑,阐明了其彻底改变该领域和改善患者治疗效果的潜力。
如果您有兴趣致力于实现这些建议中的任何一项,欢迎您联系项目负责人 Victoria Grace Walden 博士 (v.walden@sussex.ac.uk),主题为:AI 和机器学习建议。我们热衷于跟踪报告发布后的影响,支持该领域的持续工作,也可能让您与其他对类似行动感兴趣的组织取得联系,以支持合作。
空间幻象技术的最新进展已实现了分析组织形态,细胞组成和生物分子表达模式的新方法。这些进步正在促进数字病理新兴领域中新的计算工具和定量技术的开发。在这篇综述中,我们调查了使用数字化的组织病理学幻灯片和补充材料开发用于空间映射的OMIC数据分析的计算方法的当前趋势,并重点介绍了与泌尿生殖学肿瘤学研究有关的工具和应用。评论包含三个部分:1)组织幻灯片分析的图像处理方法的概述; 2)与空间解决的OMIC数据分析的机器学习集成; 3)讨论当前局限性和未来在临床决策过程中整合机器学习的方向。
自动化工厂、核电站、电信中心和空间站等设施的计算机控制操作环境正变得越来越复杂。随着这种复杂性的增加,使用集中管理和调度策略来控制此类环境将变得越来越困难,这些策略既能应对意外事件,又能灵活应对可能随时间发生的操作和环境变化。解决这个问题的一个越来越有吸引力的方法是将此类操作的控制权分配给许多智能的、能够完成任务的计算代理。现实世界领域可能由多个代理组成。在这样的领域中,代理通常会执行许多复杂的任务,这些任务需要在一定程度上关注环境变化、时间限制、计算资源界限以及代理的短期行动可能对其长期目标产生的影响。在现实世界中操作意味着必须在时间和空间的多个粒度级别上处理意外事件。虽然代理必须保持反应能力才能生存,但如果代理要与其他代理协调其行动并以有效的方式处理复杂任务,则需要一定程度的战略和预测决策。本论文提出了一种新的集成代理架构,旨在为具有
