创新描述:玉米致死性坏死病 (MLN) 是一种病毒性疾病,正在东非肆虐。病毒利用宿主的真核翻译起始因子 (eIF) 将其基因组翻译成蛋白质以供复制。eIF 中的突变使病毒无法识别它们,因此病毒无法复制。我们在东非的 MLN 易感株系中敲除了四个 eIF 基因,以确定哪些基因(如果有的话)赋予了病毒抗性。
摘要:维生素 A 缺乏症是一个全球性的健康问题,对发展中国家的人们影响尤为严重。它会导致严重的健康问题,例如免疫系统虚弱和视力受损。转基因技术已成为解决这一问题的一种可能方法,通过增加大米、玉米和土豆等主食作物中的 β-胡萝卜素含量。大米、玉米和土豆是全球重要的主食作物,但缺乏维生素 A 等必需营养素。因此,科学家已成功地利用各种基因工程技术(如 CRISPR-Cas 基因编辑、基因枪转化和农杆菌介导的转化)将增强 β-胡萝卜素所需的基因插入这些作物中,从而为维生素 A 缺乏和营养不良提供了解决方案。
玉米 ( Zea mays ) 是世界上最重要的粮食作物之一,全球产量最大,为满足人类对食物、动物饲料和生物燃料的需求做出了贡献。随着人口增长和环境恶化,迫切需要采取高效、创新的育种策略来开发高产抗逆的玉米品种,以保障全球粮食安全和可持续农业。CRISPR-Cas 介导的基因组编辑技术 (CRISPR-Cas (CRISPR-associated)) 已成为植物科学和作物改良的有效而有力的工具,并且可能以不同于杂交和转基因技术的方式加速作物育种。在本综述中,我们总结了 CRISPR-Cas 技术在玉米基因功能研究和新种质生成中的应用现状和前景,以提高产量、特种玉米、植物结构、应激反应、单倍体诱导和雄性不育。本文还简要回顾了玉米基因编辑和遗传转化系统的优化。最后,讨论了使用 CRISPR-Cas 技术进行玉米遗传改良所带来的挑战和新机遇。
基因组编辑的最新进展极大地促进了开发生物技术作物以实现更可持续的粮食生产的努力。CRISPR/Cas 是最通用的基因组编辑工具,它已显示出创造基因组修饰的潜力,这些修饰范围从基因敲除和基因表达模式调节到等位基因特异性改变,以设计出具有多种改良农艺性状的优良基因型。然而,一个常见的瓶颈是将 CRISPR/Cas 递送到不易转化和再生的作物。最近提出了几种技术来克服转化顽固性,包括 HI-Edit/IMGE 和编码形态发生调节剂的基因的异位/瞬时表达。这些技术可以消除使作物无法进行基因组编辑的障碍。在这篇综述中,我们讨论了作物基因组编辑的进展,特别关注使用技术来改善复杂性状,例如玉米的水分利用效率、干旱胁迫和产量。
在现代植物育种中,基因组选择已成为选择仅部分表型的大型繁殖种群中的优质基因型的黄金标准。许多育种计划通常依赖于单核苷酸多态性(SNP)标记来捕获全基因组的选择候选数据。为此,具有中等至高标记密度的SNP阵列代表了一种强大且具有成本效益的工具,可从大规模繁殖群体中生成可重现,易于处理的高通量基因型数据。但是,SNP阵列容易出现导致等位基因呼叫失败的技术错误。为了克服这个问题,基于失败的SNP调用纯粹是技术性的,通常会估算失败的呼叫。但是,这忽略了失败调用的生物学原因,例如:缺失 - 越来越多的证据表明基因存在 - 缺失和其他类型的基因组结构变体可以在表型表达中发挥作用。由于缺失通常不与其弯曲的SNP不平衡,因此缺少SNP调用的排列可能会掩盖有价值的标记 - 性状关联。在这项研究中,我们使用四个参数和两个机器学习模型分析了为低油菜籽和玉米分析的数据集,并证明基因组预测中的等位基因调用失败对重要的农艺性状具有很高的预测。我们根据种群结构和连锁不平衡提出了两个统计管道,这使可能由生物学原因引起的失败SNP调用过滤。对于所检查的人群和特征,基于这些过滤的失败等位基因调用的预测准确性与基于标准SNP的预测具有竞争力,这是基因组预测方法中缺失数据的潜在价值的基础。SNP与所有失败的等位基因调用或过滤等位基因调用的组合并不能以基于基因组关系估计的冗余性而获得的基于SNP的预测的预测均超过预测。
摘要:发展中国家数百万人的饮食中普遍存在微量营养素缺乏症,需要采取有效的缓解措施。通过育种开发生物强化品种有望成为解决微量营养素缺乏症的可持续且经济实惠的解决方案。过去十年的育种工作已经产生了数十种生物强化开放授粉品种和杂交品种,适应不同的农业生态区。基因组学和分子工具的进步使得快速鉴定富含必需微量营养素(如维生素 A 原 (PVA)、铁 (Fe) 和锌 (Zn))的玉米品种成为可能。利用多组学驱动的发现来发现大量营养性状背后的遗传因素对于将产品概况中的优质性状育种纳入主流至关重要。分子育种方案以及在育种流程的每个阶段整合新兴的组学工具对于提高遗传增益至关重要。近期阐明微量营养素代谢的势头应扩展到新的育种目标以及同时提高营养品质并减少主食作物中的抗营养因素。利用新技术建立涉及营养基因组学、基因组编辑和农艺生物强化的综合育种方法对于解决营养不安全问题至关重要。本综述强调了整合现代工具加速营养丰富玉米遗传改良的前景。
作者:KJ Zimba · 2022 年 · 被引用 7 次 — 挥发性防御化合物通常充当害虫的威慑剂或引诱剂,因此可能被捕食者和寄生蜂利用作为宿主位置线索……
Vivekanand P Patil 和 Mahendran 摘要 卡纳塔克邦以玉米生产和工业葡萄糖提取而闻名。这两个地区在北部和南部地区相互联系,很容易获得有关完整供应链的完整信息。共选取 280 个样本进行调查,其中包括 120 名玉米农民、60 名佣金代理商、60 名贸易商、20 名加工单位和 20 名买家。玉米的供应链从农民开始,然后连接到佣金代理商,接着是贸易商、加工单位和买家。佣金代理商在连接玉米农民和贸易商销售产品方面发挥着非常重要的积极作用。根据上述渠道计算出的价差表明,玉米的价差为 927.15 卢比/季和 739.54 卢比/季。北卡纳塔克邦和南卡纳塔克邦供应链的技术效率和规模效率 北卡纳塔克邦和南卡纳塔克邦玉米供应链的平均技术效率分别为 81.00% 到 97.20% 和 92.70% 到 85.70%。南卡纳塔克邦玉米供应链的技术效率更高,因为南卡纳塔克邦的电子招标市场表现良好,同时提高了对质量、供应可靠性和价格稳定性的控制。这种模式的另一个优点是,它为农民和佣金代理商提供了灵活性和更好的理解,以实现增值,例如干燥和更好的包装,减少浪费,加工单位的灵活性更高,从而改善了供应链实践。 关键词:印度芥末,路径系数分析 介绍 供应链管理 衡量供应链成功的真正标准是整个供应链中的活动协调得如何好,从而为消费者创造价值,同时提高供应链中每个环节的盈利能力。供应链管理 (SCM) 是“对向消费者提供所需产品的整个生产、分销和营销流程的管理”。供应链管理是为最终用户或最终消费者创造价值的综合过程。它是一种将产品或服务生命周期中的所有活动(从最早的原材料来源到最终消费者再到处置)整合在一起的理念。绘制供应链是供应链管理的第一步,包括绘制供应链中的参与者(承担特定目标的人)以及原材料从玉米农民到买家的流动情况。玉米供应链玉米供应链中的主要利益相关者如下:乡村聚合商/贸易商:他们在玉米供应链中发挥着重要作用,因为他们在生产点即村庄开展业务。在某些情况下,一些农民自己也充当乡村聚合商,他们从小农户手中收购玉米,然后通过佣金代理或直接卖给大贸易商,具体取决于该地区可交易玉米的数量。由于村级集运商距离玉米农户较近,因此在玉米销售旺季,他们经常充当佣金代理的代理人。因此,他们往往是佣金代理和玉米种植户之间最可靠的纽带。他们以现金方式从分散的小农和边际农户家门口收购玉米。他们还根据佣金代理提供的价格信息告知农民。在某些情况下,比如在泰米尔纳德邦,贸易商还在农田里提供收割和脱粒服务,并直接在田间购买谷物。
膜联蛋白(ANNS)是一个在植物生长,发育和压力反应中起关键作用的进化保守,依赖钙依赖性的磷脂结合蛋白的家族。利用26个高质量玉米基因组的泛基因组,我们鉴定了12个ANN基因,其中包括9个核心基因(以所有26条线为单位)和3个近核基因(以24-25条为单位)。这突出了基于单个参考基因组研究ZMANN基因的局限性。评估26个品种中ANN基因的KA/KS值表明Zmann10在某些品种中处于正选择状态,而其余基因的Ka/ks值小于1,表明纯化选择。系统发育分析将ZMANN蛋白分为六组,其中VI仅包含ZMANN12。某些品种的结构变化改变了保守的结构域,产生了许多非典型基因。转录组分析表明,不同的ANN成员在各种组织以及不同的非生物和生物应力处理下具有不同的表达模式。在冷应力下,来自各种玉米组织的转录组数据的加权基因共表达网络分析鉴定出参与共表达模块的四个ANN基因(Zmann2,Zmann6,Zmann7,Zmann9)。总体而言,这项研究利用高质量的玉米pangenomes对Zmann基因进行生物信息学分析,为ZMANN基因的进一步研究提供了基础。