Josephson与拓扑绝缘子作为其弱连接(S-TI-S结)的连接被预计将托管Majorana Fermions,这是为拓扑保护受拓扑保护的量子计算创建量子的关键。但是S-Ti-S电流相关的细节及其与磁场的相互作用尚不清楚。我们用NBTI导线制造了一个BI 2 SE 3连接,并使用施加的平面内字段来测量连接处的Fraunhofer图案。我们观察到,不对称的fraunhofer图案出现在B z,b x,y的电阻图中,并带有基因区的节点间距。这些不对称模式即使在零平行场中也出现,对于高达1 K的温度,它们也会与异常特征与预期有限的库珀配对动量移动和几何效应的不对称Fraunhofer模式进行比较。我们表明几何效应可以主导,而与平面场地幅度无关。这些结果对于将几何相移与库珀对动量转移,Majorana模式特征或其他非常规的超导行为而导致的几何相移很重要。
Majorana零模式(MZM)的成功实现 - 不代表大约的凝结物类似物[2,3],为拓扑量子构成[4-7]的有前途的平台[4-7],依赖于拓扑阶段的强大超级超级超级阶段[4-7],这些阶段是他们[8-8]的固有阶段[8]。在没有天然发生的一维拓扑超导体的情况下,该研究集中在杂化结构[15-17]上,尤其是半导体(SM)电线,在存在磁性纤维相似的情况下,与S-波超导体(SCS)接近耦合,并耦合。即使在存在一些弱 /中度系统不均匀性的情况下,即使在存在某些弱 /中度系统的情况下,也可以确保出现拓扑超导阶段的出现。然而,除了抑制母体超导体的间隙外,轨道效应起着重要作用[25],并且严重限制了可靠的拓扑超导性的实现,应用的磁性磁场对基于Majorana基于Majorana topolication Quological Qubits的可能的设备布局构成了严重的限制[26]。可能的解决方案是通过将半导体耦合到磁性内硫酸[16,27]来创建所需的Zeeman场。最近,使用INAS纳米线进行了实验性探索,具有超导Al和铁磁EUS的外延层[28-30]。关键的发现是1 t命令的有效Zeeman Field SC EFF(〜0。这些特征在没有重叠的Al和EUS覆盖的小面的杂化结构中不存在[28]。05 MeV)在没有施加的磁场的情况下出现在超导体中,但仅在具有超导体和铁磁绝缘子的壳壳中壳壳[28]。与超导体中有效的Zeeman场的出现相关的是,观察到零偏置电导峰,用于电荷隧穿到半导体线的末端,这与拓扑超导的存在一致。
可以用从进化生物学借来的适当术语来描述凝结物理学的进展:标点平衡。该术语用于描述物种进化中的突然跳跃,这些进化是由长期(称为停滞的长期)所产生的,几乎没有或没有明显的变化。在1980年代初期,由于发现裂纹的量子大厅的效应,凝结的物质发生了范式转移,并且理论上的预测是,这种系统可以作为一种新兴的现象,既有玻色子也不是玻色子,也不是费米子。之后,长期以来以缓慢的速度以缓慢的节奏进行了实验和理论。将近四十年后,这些发展最终达到了两个精美的实验,共同提供了迄今为止任何人所做的最强大的实验证明[1,2]。每个实验都检测到最简单的变量的任何人,因为它们获得了一个分数相,该相位阶段会在玻色子和费米子之间进行固定。一个实验测量粒子相关性。这项技术测量了粒子喜欢束缚在一起的程度:玻色子束在一起,费米斯喜欢分开,任何人都在介于两者之间做某事。另一个使用互联仪来查明通过环绕另一个粒子在另一个粒子周围获得的相位的相位。该实验利用了颗粒的交换特性。两个玻色子的互换坐标将2的量子机械相添加到总波函数中,而对于两个fermions,其pi和两个人在两个介于两者之间的位置。在2012年,Majorana Fermions的第一个实验签名除了这些简单的人,量子霍尔系统有望实现更多异国情调的人,例如Majorana fermions,它们对它们编织的顺序敏感 - 该属性可以实现量子计算的某些方案[3]。Majorana fermion是其自身的反粒子,于1937年提出,很长一段时间以来,它似乎与凝聚的物理学无关。在21世纪理论的转弯预测[4,5]时,马利亚纳斯也可能发生在冷凝的物质系统中。
我们研究了Rashba-Hubbard模型中的拓扑超导性,描述了沉重的超级弹药和范德华的材料,反转破裂。我们特别关注靠近范霍夫奇点的纤维,在那里,很大的状态增强了超导过渡温度。确定超导间隙的拓扑结构,并在存在障碍和残留相互作用的情况下分析其表面状态的稳定性,我们采用了FRG + MFT方法,该方法将无偏见的功能重新分配基团(FRG)与真实空间的均值均值含量均值(MFT)结合在一起。我们的方法揭示了一系列拓扑超导状态,包括1和B 1配对,其波函数分别具有主要的p - 和d波角色,以及时间倒流的1 + IB 1配对。A 1和B 1个状态分别具有螺旋和频带Majorana边缘状态的第一阶拓扑,但A 1 + IB 1配对表现出具有Majoraana角模式的二阶拓扑。我们研究了批量超导状态的混乱稳定性,分析边缘状态的相互作用引起的不稳定性,并讨论对实验系统的影响。
摘要:有限温度下量子场的热性质对于理解强相互作用物质至关重要,量子计算的最新发展提供了一条替代且有前途的研究途径。在这项工作中,我们使用量子算法研究仅涉及费米子的热场理论。我们首先深入研究数字量子计算机上通过量子比特呈现的费米子场,以及用于评估一般量子场论热性质的量子算法,例如量子虚时间演化。具体来说,我们使用量子模拟器展示了 1+1 维马约拉纳费米子热场理论的数值结果,例如热分布和能量密度。除了自由场理论,我们还研究了与空间均匀马约拉纳场耦合产生的相互作用的影响。在这两种情况下,我们都通过分析表明系统的热性质可以用相空间分布来描述,量子模拟结果符合分析和半经典期望。我们的工作是理解热不动点的重要一步,为实时热化的量子模拟做好准备。
我们根据s = 1 /2旋转算子的不同majorana fermion表示形式,使用parton均值结构理论来确定蜂窝晶格上各向异性kitaev-heisenberg模型的相图。首先,我们使用二维Jordan-Wigner Transformation(JWT),涉及半实用的蛇字符串操作员。为了确保典型化的汉密尔顿人仍然是本地的,我们考虑了海森伯格部门的极端交换各向异性的极限。第二,我们使用传统的基塔维尔代表,以四个受局部约束的约束,我们通过拉格朗日乘数执行。对于这两种表示,我们一致地将键和磁化通道中的相互作用项解除,并确定相图作为Kitaev耦合的各向异性的函数,以及Ising交换的相对强度。虽然这两种平均值理论都产生了相同的相位边界,以使无间隙和间隙的Kitaev量子旋转液体之间的拓扑相变,但JWT无法正确描述磁不稳定性和限定性的体温行为。我们的结果表明,在低温下,磁相跃迁是第一阶,但在一定温度的高度上变得连续。在这种能量尺度上,我们还观察到量子旋转液体上的有限温度的交叉,从低温下的分数化paramagnet,在高温下将大量的弹性搅拌冻结到高温下的常规Parmagagnet。
单个原子缺陷是关注主机量子状态的突出窗口,因为来自主机状态的集体响应是在缺陷周围作为局部状态出现的。费米液体中的弗里德尔振荡和围绕云是典型的例子。然而,对于量子自旋液体(QSL)的情况是巨大的,这是一种具有分数化准粒子的异国情调状态,造成量子纠缠的深远影响而产生的拓扑顺序。由于分数化准粒子的电荷中立性和QSL的绝缘性质,阐明基本的局部电子特性一直在挑战。在这里,使用光谱成像扫描隧道显微镜,我们报告了金属底物上最有希望的Kitaev QSL候选者单层α -rucl 3的原子解析图像。我们发现在绝缘子表现出的量子干扰是围绕具有特征性偏见依赖性的缺陷的局部状态密度的不稳定和衰减的空间振荡。振荡与本质上的任何已知空间结构不同,并且在其他Mott绝缘子中不存在,这意味着它是一种与α -rucl 3独有的激发有关的异国情调振荡。数值模拟表明,可以通过假设Kitaev QSL的巡游主要植物散布在Majoraana Fermi表面上,可以通过假设射击振荡来复制。振荡提供了一种新的方法,可以通过局部响应来探索Kitaev QSL,以针对金属中的Friedel振荡等缺陷。
共生[9]。- 在施用合成氮肥[14]以及与微藻结合时,矿物营养效率的提高了植物中矿物营养的效率[6,10]; - 鉴定出重金属吸收及其在植物可用部分中的积累的减少[12,13,18]; - 证明了Origanum Majorana L. [18]中精油质量的提高,Physalis Physalis Peruviana L. [13]的脂肪酸组成的改变以及金仰利官方类胡萝卜素的变化[15]; 1.2。在一系列出版物中,豆科植物与氮固定细菌之间的共生关系[11,17,19,20,23,23,25,26,28],助理教授Christozkova表明了共生氮固定的意义