免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
本文件由美国运输部赞助发布,旨在进行信息交流。美国政府对其内容或使用不承担任何责任。美国政府不认可任何产品或制造商。此处出现的贸易或制造商名称仅仅是因为它们被认为对本报告的目标至关重要。本报告中的调查结果和结论均为作者的观点,并不一定代表资助机构的观点。本文件不构成 FAA 政策。有关其使用,请咨询技术文档页面上列出的 FAA 赞助组织。本报告可在联邦航空管理局 William J. Hughes 技术中心的全文技术报告页面:actlibrary.tc.faa.gov 以 Adobe Acrobat 便携式文档格式 (PDF) 获得。
作者要感谢中心战略发展转向集团(CSDSG)为这项工作提供飞行前的资金,而Teresa Miller为飞行后评估提供了帮助。作者还要感谢Stratasys,该Stratasys是在太空/Redwire中制造的,NASA MSFC的AM团队提供了飞行和地面样品进行测试。Meghan Carrico(EM41)提供了UV ESH计算。Alpha Space的Nathan Hughart设计了两次航班的样品布局。对于飞行后的数据收集,该团队还要感谢托德·加蒙(EM41)的帮助,以准备测试的inconel样品,凯瑟琳·贝尔(Catherine Bell)和艾莉森·佩斯(Allison Peusch)(EM22)进行机械测试并提供拉伸测试数据
建筑结构的响应以多尺度运动学为特征,其复杂关系及其对工程荷载响应的影响仍未完全了解,因此需要进一步研究。更确切地说,缺乏能够提供多尺度数据的实验方法仍然是一个关键问题。本文介绍了对定向能量沉积制造的薄壁拉胀金属晶格进行的压溃试验的实验和数值分析。这项工作重点关注发生在 (a) 晶胞微观尺度和 (b) 对应于均质连续体的宏观尺度上的两尺度应变局部化。感兴趣的结构被定义为 2D 拉胀线框的挤压,并允许应用专门用于识别两个考虑尺度上的运动学的改进的数字图像相关方案。具体而言,通过跟踪晶格交叉的变形来研究微观运动学,而从虚拟晶胞角的运动推导出宏观应变。结果表明,晶格的整体弹塑性响应完全由特定位置的塑性铰链形成所驱动,从而导致特征变形模式,并最终导致相邻晶胞的集体行为。配套有限元计算与实验结果非常吻合,因此能够评估建模假设、晶胞几何形状、应变率和几何缺陷对建筑材料整体响应的影响。
本研究研究了后处理热处理对通过两种不同的增材制造技术(即激光束粉末床熔合 (LB-PBF) 和激光粉末定向能量沉积 (LP-DED))制备的 Hastelloy-X 高温合金的微观结构和力学性能的影响。使用扫描电子显微镜 (SEM) 和电子背散射衍射 (EBSD) 分析检查微观结构,同时使用洛氏 B 法通过宏观硬度测试评估力学性能。在经过几次热处理后彻底研究了合金的微观结构,这些热处理包括应力消除(在 1066°C 下持续 1.5 小时)、热等静压(在 103 MPa 压力下在 1163°C 下持续 3 小时)和/或固溶处理(在 1177°C 下持续 3 小时)。结果表明,对于 LB-PBF 和 LP-DED Hastelloy-X,后处理热处理可产生均匀的晶粒结构以及碳化物的部分溶解,尽管它们的晶粒尺寸不同。关键词:增材制造、Hastelloy-X、微观结构、晶粒尺寸、宏观硬度。
本文介绍了增材制造 (AM) 两相热管技术和先进的热管理技术,这些技术是在英国诺丁汉大学举行的第 16 届英国传热会议上作为主题演讲发表的。AM 热管利用激光粉末床熔合 (LPBF) 技术开发而成,形成具有集成微型晶格毛细管芯结构的钛热管容器。介绍了欧洲航天局 (ESA) 和 Innovate UK 项目开发的 AM 热管技术,包括钛氨太空微型热管组件和钛水两相热管蒸汽室。此外,还介绍了用于太空、航空航天和高端汽车市场高端电子应用的各种定制热管理设备。其中包括热管技术、真空钎焊液冷板技术和 k-Core 封装石墨技术的商业实例。
2 SLM 10 2.1参考书目报告制造的钛合金Ti6Al4v的各向异性的机械表征。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.2添加剂制造过程的介绍。。。12 2.1.3钛合金TI6AL4V的微结构和纹理由增材制造制造。。。。。。。。。。15 2.1.4 SLM生产的钛al-Loy Ti6al4v的机械性能的各向异性。。。。。。。。。。。。。18 2.1.5结论。。。。。。。。。。。。。。。。。。。。。。。。。。。22 2.2实验研究。。。。。。。。。。。。。。。。。。。。。。。。。。23 2.2.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。23 2.2.2样品的描述。。。。。。。。。。。。。。。。。。24 24 2.2.3单轴拉伸测试。。。。。。。。。。。。。。。。。。。。。27 27 2.2.4剪切测试。。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.3结果和讨论。。。。。。。。。。。。。。。。。。。。。。。。37 2.3.1单轴拉伸测试。。。。。。。。。。。。。。。。。。。。。37 2.3.2剪切测试。。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.4结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45
摘要:薄壁结构因其在航空航天工程中用作轻型部件而备受关注。通过增材制造 (AM) 制造这些部件通常会产生不希望的翘曲,这是因为制造过程中会产生热应力,并且部件的结构刚度会降低。本研究的目的是分析激光粉末床熔合 (LPBF) 制造的几个薄壁部件的变形。进行实验以研究由 LPBF 制造的薄壁结构在几个开放和封闭形状中对不同设计参数(例如壁厚和部件高度)的翘曲敏感性。使用 3D 扫描仪测量平面外位移方面的残余变形。此外,首先校准内部有限元软件,然后使用它来增强原始设计,以尽量减少 LPBF 打印过程引起的翘曲。结果表明,开放的几何形状比封闭的几何形状更容易翘曲,并且垂直加强筋可以通过增加刚度来减轻部件翘曲。
a 威斯康星大学麦迪逊分校机械工程系,美国威斯康星州麦迪逊 53706 b 威斯康星大学麦迪逊分校材料科学与工程系,美国威斯康星州麦迪逊 53706 c 威斯康星大学麦迪逊分校格兰杰工程研究所,美国威斯康星州麦迪逊 53706 ⸸ 通讯作者 摘要 拓扑优化 (TO) 与增材制造 (AM) 的结合有可能彻底改变现代设计和制造。然而,制造优化设计的实例很少,而经过实验测试的设计实例就更少了。缺乏验证再加上 AM 工艺对材料性能的影响,使我们对工艺-微观结构-性能关系的理解存在差距,而这对于开发整体设计优化框架至关重要。在这项工作中,使用定向能量沉积 (DED) 和选择性激光熔化 (SLM) 方法对功能设计进行了拓扑优化和制造。这是首次在 TO 背景下直接比较这些 AM 方法。在单轴位移控制拉伸载荷下,研究了 SS316L 和优化部件在制造和热处理条件下的机械性能,并与有限元建模 (FEM) 预测进行了比较。优化样品在试件中提供了压缩和拉伸载荷区域。实验结果表明 FEM 预测较为保守。微观结构分析表明,这种差异是由于增材制造过程中形成的细化微观结构,可增强高应力区域的材料强度。此外,由于晶粒尺寸更细化和位错结构更密集,SLM 样品表现出比 DED 样品更高的屈服强度。TO 结果对 AM 方法、后处理条件和机械性能差异很敏感。因此,通过结合微观结构特征来考虑制造部件中的局部微观结构变化,可以最好地优化用于 AM 框架的 TO。