模仿学习使代理可以在绩效指标未知并且未指定奖励信号时从专家演示中学习。标准模仿方法通常不适用于学习者和专家的参议员能力不匹配和示威的情况,并被未观察到的混杂偏见污染。为了应对这些挑战,已追求因果模仿学习的最新进步。但是,这些方法通常需要访问可能并非总是可用的基本因果结构,从而带来实际挑战。在本文中,我们研究了使用部分识别的规范马尔可夫决策过程(MDP)内的强大模仿学习,即使在系统动力学不是从混杂的专家演示中确定系统动力学的情况下,也允许代理商实现专家性能。特定的,首先,我们从理论上证明,当MDP中存在未观察到的混杂因素(UCS)时,学习者通常无法模仿专家的表现。然后,我们在部分能够识别的设置中探索模仿学习 - 从可用的数据和知识中,转移分布或奖励功能是无法确定的。增强了著名的Gail方法(Ho&Ermon,2016年),我们的分析导致了两种新颖的因果模仿算法,这些算法可以获得有效的政策,以确保实现专家绩效。
使用概率的量子力学观点扩展经典概率推理最近引起了人们的兴趣,特别是在开发隐量子马尔可夫模型 (HQMM) 来模拟随机过程方面。然而,在表征此类模型的表现力和从数据中学习它们方面进展甚微。我们通过展示 HQMM 是一般可观察算子模型 (OOM) 类的一个特殊子类来解决这些问题,这些模型在设计上不会受到负概率问题的影响。我们还为 HQMM 提供了一种可行的基于回缩的学习算法,该算法使用模型参数 Stiefel 流形上的约束梯度下降。我们证明这种方法比以前的学习算法更快,并且可以扩展到更大的模型。
随机步行(或马尔可夫链)是随机模型,在理论计算机科学中广泛使用。从经典上讲,通过图定义随机步行,其中节点是过程的可能状态,边缘代表可能的过渡。在每个步骤中,根据某些概率分布选择了当前状态的外向边缘,并达到相应的状态。马尔可夫链的理论是对许多算法的分析的基础:一个显着的例子是Schönin的算法,这是最知名的令人满意的经典算法之一(SAT)问题[1]。马尔可夫连锁店的一个重要属性是所谓的打击时间,它量化了我们需要执行的步行数量(预期),以达到或达到一些固定的目标状态,但给定一些初始条件。对打击时间的分析是搜索问题的强大工具[2,3,4,5],因为这些数量通常与复杂性指标密切相关。作为一个例子,请考虑令人满意的问题:给定F(x),我们从某个分配x 0开始(例如,x 0 =(0,。。。,0)),在每个步骤中,我们选择一个变量以随机均匀地翻转。这可以正式化为在超立方体上的随机步行,并且给定F的分配x ∗,从x 0到x ∗的击中时间平均告诉我们要达到该分配所需的步骤数。一种运行Markov链的算法并在每个步骤检查当前状态是否满足F的时间复杂性与打击时间成正比。在过去的几十年中,几项研究工作致力于将随机步行的概念扩展到量子设置,目的是实现某些速度
Actor-Critic方法在许多领域中实现了最新的性能,包括机器人技术,游戏和控制系统([1],[2],[3])。时间差异(TD)学习可能被认为是演员评论家的组成部分,而TD学习的更好界限通常是参与者 - 批评分析的成分。我们考虑强化学习中的政策评估问题:鉴于马尔可夫决策过程(MDP)和政策,我们需要估算本政策下每个州(预期的所有未来奖励总和)的价值。政策评估很重要,因为它实际上是许多其他算法(例如策略迭代和参与者批评)的子例程。政策评估的主要挑战是,我们通常不知道基本的MDP,并且只能与之互动,并且状态数量通常太大,迫使我们维持对状态值的真实向量的低维近似。我们将重点放在克服这组挑战的最简单类别的方法上,即具有线性函数近似的TD方法。这些方法试图维持低维参数,该参数会根据观察到的奖励和过渡不断更新,以维持跨州估计值的一致性。这些方法的收敛证明首先在[4]中给出。在本文中,我们重点介绍了策略评估的多代理版本:我们考虑具有同一MDP和相同政策副本的n个代理,但是MDP
平行MCMC技术使用多个建议来获得超过MCMC算法(例如大都市)的效率提高(Metropolis等人。1953; Hastings 1970)及其后代仅使用一个建议。Neal(2003)首先通过提出候选状态的“池”并使用动态编程来选择有效的MCMC过渡来推断隐藏的马尔可夫模型状态。接下来,Tjelmeland(2004)考虑了一般环境中的推论,并显示了如何维持任意数字P的详细平衡。考虑在R D上定义的概率分布π(dθ),该概率密度π(θ)相对于Lebesgue度量,即π(dθ)=:π(θ)dθ。要从目标分布π生成样品,我们制作了满足
摘要: - 本文介绍了隐藏的马尔可夫模型在波兰语言中的文本生成中的应用。开发了一个生成文本的程序,利用隐藏的马尔可夫模型。该程序使用参考文本来学习可能的字母序列。还讨论了文本处理的结果。提出的方法也可以在语音识别过程中有所帮助。键字: - 自然语言处理,文本生成,隐藏的马尔可夫1简介言语综合和识别的领域在过去30年中,由于蜂窝电话的开发,它被广泛使用。在最流行的语音综合方法和分析方法中,采用了隐藏的马尔可夫模型(HMM)[2,6]。隐藏的马尔可夫模型也可以在其他领域中使用,仅命名遗传学,复制DNA代码或经济学,以预测未来的经济结果[3,4]。hmm of str k的估计在学习过程中构成的k前值的序列基于给定位置中发生值的可能性。 计算学习载体中长度k +1单词的出现数量。 序列以相同的k字符开始构成上下文。 它们的计数可用于估计K +1位置中值发生的可能性[8]。 2跃迁矩阵过渡矩阵M定义了所有可能的先前序列功能中值x n+1的发生数量。 它还可能包含出现值x n+1而不是出现数量的可能性。估计在学习过程中构成的k前值的序列基于给定位置中发生值的可能性。计算学习载体中长度k +1单词的出现数量。序列以相同的k字符开始构成上下文。它们的计数可用于估计K +1位置中值发生的可能性[8]。2跃迁矩阵过渡矩阵M定义了所有可能的先前序列功能中值x n+1的发生数量。它还可能包含出现值x n+1而不是出现数量的可能性。然后从公式1计算出可能性,其中p ij是条件下元素x i的概率,前面的符号为x j。[8] p ij(x i /x j)= p(xi∩xj) /p(x j)(1)如果给定序列中n元素的值S n取决于元素n-1的值,则可以应用HMM的值来预测连续值。条件下元素x n+1发生的概率是:p(x n+1 /x n)给出:p(x n+1 /x n)(2)
摘要信息在经济中的作用,尤其是在运输中,伴随着网络威胁的增长。国际海事组织已经开发并采用了许多基础网络安全文件,这些文件定义了船上网络安全管理的要求。这些文件迫使海上公司的管理,以确保正确考虑网络风险并在安全管理系统中应用保护方法。对于海事公司和船只而言,相关统一规则的制定和建立是一项紧迫的任务。确保信息安全的最有希望的方向当然是使用数学模型。这样的模型描述了违反网络空间和保护系统的相互作用的过程,该过程应考虑到船上可能的网络攻击,并确保尽可能多地保存和不可能。分析网络空间中发生的流程数学模型的研究领域的研究表明,首先,这是一个真正相关的研究方向,其次,目前有许多不同的理论构成了建模的基础。这项工作的作者为船上网络安全管理系统的数学建模提出了一种新方法,即马尔可夫链理论的使用,因为在船上的网络攻击可以在任何随机的时刻发生,而且此事件并不总是取决于发生在某个时候的网络攻击。因此,使用数学建模方法构建了船上网络安全管理系统作为企业安全管理系统子系统的模型。诸如船舶的网络安全状态,国家之间的概率关系,根据国家对行动的监管。网络安全管理系统的数学模型基于离散的马尔可夫进程的模型,其中马尔可夫链的挖掘物的顶点是船舶的网络安全状态。使用专家方法研究了船体网络安全系统状态之间的连接。根据船舶的网络安全状况的示例说明了开发的模型。在距离“船舶计算机系统和网络的网络安全”中,在Kherson海事学院的教育过程中实施了船体网络安全系统的考虑方法和技术。
本文讨论了如何将Q学习和深度Q-Networks(DQN)应用于马尔可夫决策过程(MDP)描述的状态行动问题。这些是机器学习方法,用于在每个时间步骤中找到最佳的动作选择,从而导致最佳策略。讨论了这两种方法的局限性和优势,主要局限性是Q学习无法用于无限状态空间的问题。Q-学习在算法的简单性方面具有优势,从而更好地理解了该算法实际上在做什么。Q学习确实设法找到了本文研究的简单问题的最佳策略,但无法解决高级问题。深层Q-NETWORK(DQN)方法能够解决这两个问题,因此很难理解算法实际上在做什么。
摘要。我们通过快速混合马尔可夫链的镜头研究分区函数的代数特性,尤其是零位置。TE经典Lee-Yang计划通过定位分区函数的复杂零来启动相变的研究。马尔可夫连锁店除了用作算法外,还用于模拟趋于平衡的物理过程。在许多情况下,马尔可夫链的快速混合与没有相变(复杂零)的不存在。先前的工作表明,没有相变的缺失意味着马尔可夫链的快速混合。,我们通过效力概率工具来揭示了相反的联系,以分析马尔可夫链以研究分区功能的复杂零。我们激励的例子是在푘均匀的超图上的独立性多项式,其中最著名的无零智慧政权显着落后于政权,在该政权中,我们迅速将马尔可夫链用于基础超图独立集。特别是,已知GLAUBER动力学在最大程度δ的 - 均匀的超图中迅速混合,规定δ2푘 / 2。另一方面,独立性多项式在푘-均匀超图上的点1周围最著名的零柔性需要δ≤5,与图上的结合相同。通过引入马尔可夫链的复杂扩展,我们将现有的渗透论点升级到复杂平面,并表明,如果δ2푘 / 2,马尔可夫链将在复杂的邻里收敛,而独立多项式本身不会在同一邻居中消失。在同一制度中,我们的结果还意味着均匀随机独立集的大小的中心限制定理,以及针对某些常数훼훼훼훼훼훼푛훼훼훼훼훼훼훼훼훼훼훼훼的确定性近似算法的确定性近似算法。