量子计量学通过使用适当定制的量子态和检测策略,有望实现超越经典极限的测量精度。然而,由于难以生成高质量的大规模探测器,扩大这一优势在实验上具有挑战性。在这里,我们构建了一个光子装置,通过以相干控制顺序执行的操作来操纵探测器的动态,从而实现增强的精度缩放。我们的装置以相干控制顺序应用未知的旋转和已知的轨道角动量增加,以一种方式重现涉及由离散变量和连续变量生成的门的混合量子开关。当光子经历 2 mθ 的旋转和 2 l ℏ 的角动量偏移时,未知的旋转角 θ 的测量精度为 1 / 4 ml。实际增强因子高达 2317,当使用 7 . 16 × 10 7 时,我们实验中的最终精度为 0 . 0105 ′′
我们证明,由随机排序的两结果投影测量序列对量子系统造成的预期扰动的上限为该序列中至少一个测量被接受的概率的平方根。我们将此界限称为温和随机测量引理。然后,我们扩展用于证明此引理的技术以开发用于问题的协议,在这些协议中,我们可以采样访问未知状态 ρ,并被要求估计一组测量 { M 1 , M 2 , . . . , M m } 的接受概率 Tr[ M i ρ ] 的属性。我们将这些类型的问题称为量子事件学习问题。具体而言,我们表明随机排序投影测量解决了量子 OR 问题,回答了 Aaronson 的一个悬而未决的问题。我们还给出了一个适用于非投影测量的量子 OR 协议,其性能优于本文分析的随机测量协议以及 Harrow、Lin 和 Montanaro 的协议。但是,该协议需要一种更复杂的测量类型,我们称之为混合测量。在对测量集 { M 1 , ... , M m } 提供额外保证的情况下,我们表明,本文开发的随机和混合测量量子 OR 协议也可用于查找使得 Tr[ M i ρ ] 较大的测量 M i 。我们将寻找这种测量的问题称为量子事件寻找。我们还表明,混合测量为量子均值估计提供了一种样本高效的协议:该问题的目标是估计一组对未知状态的测量的平均接受概率。最后,我们考虑 O'Donnell 和 B˘adescu 描述的阈值搜索问题,其中给定一组测量 { M 1 , ... , M m } , M m } 以及对未知状态 ρ 的样本访问,其中对于某个 M i ,满足 Tr[ M i ρ ] ≥ 1 / 2,目标是找到一个测量值 M j ,使得 Tr[ M j ρ ] ≥ 1 / 2 − ϵ 。通过在我们的量子事件查找结果的基础上,我们表明随机排序(或混合)测量可用于解决这个问题,使用 O ( log 2 ( m ) /ϵ 2 ) 个 ρ 副本。这与 O'Donnell 和 B˘adescu 给出的算法的性能相匹配,但不需要在测量中注入噪声。因此,我们获得了一种阴影断层扫描算法,该算法与当前已知最佳样本复杂度相匹配(即需要 ˜ O ( log 2 ( m ) log( d ) /ϵ 4 ) 个样本)。该算法不需要在量子测量中注入噪声,但需要以随机顺序进行测量,因此不再在线。
摘要Dune FAR检测器旨在检测由中微子与大型液体氩靶的相互作用的带电产物产生的光子和电子。第一个沙丘远检测器(FD1)的光子检测系统(PDS)由6000个光子检测单元组成,称为X-arapuca。在LAR中释放粒子能量产生的及时光脉冲的检测将补充并增强沙丘壁球时间投影室。它将改善标记的非光束事件,并在低能启用超新星中微子的触发和量热法。X- Arapuca是几个组件的组件。其Photon检测效率(PDE)取决于组件的设计,单个组件的等级和耦合。X-arapuca PDE是PDS敏感性的主要参数之一,进而决定了沙丘对在银河系中检测核心偏曲超新星和核子衰减搜索的敏感性。在这项工作中,我们介绍了FD1 X-Arapuca基线设计的绝对PDE的最终评估,该设计在两个具有独立方法和设置的实验室中测量。在Palomares中报道了初步结果(Jinst 18(02):C02064,https://doi.org/10.1088/1748-0221/18/18/02/C02064,2023)。这些X-Arapuca设备的一百六十个单元已在CERN NETRINO平台的NP04设施中部署了1:20秤
衍生的类器官(PDOS)[7]。使用CyTO3D®活死测定试剂盒,它们在卵巢癌PDO中有效地确定了跨不同类器官线的卵巢癌PDO的活死细胞(图3A)[7]。他们进一步研究了卵巢癌衍生的类器官中的卡铂 - 癌症耐药性,这些类器官表现出凋亡细胞群的增加(用CyTO3D®活死测定套件标记),而miR-1287- 5p水平升高(图3B)[8]。Miao H等人进行的一项药物发现研究使用CYTO3D®活死测定试剂盒在3D PDOS中鉴定活细胞在识别卵巢癌PDOS中DNA损伤修复中识别效力毒化抑制蛋白1(FSP1)的新作用(图3C)[9]。Markus Morkel的另一项癌症研究使用Cyto3D®活死测定试剂盒来确定结直肠癌组织衍生的PDOS的细胞活力[10]。
e p r e s i d e n t,r odr i g o o。C e l i c i o u s , i s e m po w e r e d t o r e p res e n t t h e c o rpo r a t i o n i n t h e b i d d i n g o f t h e C u l t u r a l C e n t e r o f t h e P hi l i p p i n e s ( C C P ' s ) p r o j ec t S e rv i c e P r ov i d e r fo r th e 2 0 2 3 c l i e n t s a t i s fa c t i on m e as as a in u r e m e n t'j e t; t h e s i g n i ng o f n !!d o c u m e n t¢re l @ t i g e t t t t h e t r g n g n g e e t i n d e n d e t e t h e r g r i t; ng e +'。w l s a l il t“!i s'w a r i i i I 4t W 4 4。w it 4 4 446a'i i i 4 l it of w h a t e v e r n a a tu r e o r k i nd,and d e x e x e c u t e a a nd pe r f o rm a n y y a n d al a n d all a c t al a c t al l a c t a c t a c t a c ts n e c ts n e c ts n e c ts n e c e c e c e c e c e s s sa ry f o r f o r t h e p p pu rpo se
Philip Nakashima 副教授 1、Yu-Tsun Shao 博士 2,3、Zezhong Zhang 博士 4,5,6、Andrew Smith 博士 7、Tianyu Liu 博士 8、Nikhil Medhekar 教授 1、Joanne Etheridge 教授 7,9、Laure Bourgeois 教授 1,9、Jian-Min Zuo 教授 10,11 1 澳大利亚克莱顿莫纳什大学材料科学与工程系,2 美国洛杉矶南加州大学 Mork Family 化学工程与材料科学系,3 美国洛杉矶南加州大学纳米成像核心卓越中心,4 比利时安特卫普大学材料研究电子显微镜 (EMAT),5 比利时安特卫普大学 NANOlab 卓越中心,6 英国牛津大学材料系,7 克莱顿莫纳什大学物理与天文学院,澳大利亚,8 日本仙台东北大学先进材料多学科研究所,9 澳大利亚克莱顿莫纳什大学莫纳什电子显微镜中心,10 美国厄巴纳-香槟伊利诺伊大学材料科学与工程系,11 美国厄巴纳-香槟伊利诺伊大学材料研究实验室,背景包括目标我们着手对非均质晶体材料中纳米结构周围的键合电子密度进行首次位置分辨测量。迄今为止,所有键合电子密度和电位研究仅涉及均质单相材料;然而,大多数为我们服务的材料由于其包含的纳米结构而具有混合特性,这通常是设计使然。我们还注意到,材料缺陷无处不在且不可避免,因此我们可以从单一均质晶体的名义上完美的区域推导出材料特性的假设在范围和“实际”应用方面是有限的。这项工作旨在提供一种新功能,用于查询纳米结构和非均质材料中纳米结构周围的键合电子密度。我们的首次尝试涉及名义纯度(99.9999+%)铝中的纳米空隙。在实现这一目标的过程中,我们必须准确绘制空位浓度并确定空位引起的相关晶格收缩,以便能够精确测量晶体势和电子密度的傅立叶系数(结构因子)(误差小于 0.1%),因此我们取得了多项发现。© 作者,由 EDP Sciences 出版。这是一篇开放获取文章,根据知识共享署名许可 4.0 条款分发(https://creativecommons.org/licenses/by/4.0/)。
1物理系,特里斯特大学,Strada Costiera,11,34151,意大利Trieste 2 Istituto Nazionale di Fisica fisica fisica fisica Nucee,Trieste部分,Valerio 2,34127 Trieste,意大利,意大利3 dipartimento 3 dipartimento di fisicica di Fisita深圳518048,中国5个物理系华盛顿大学,圣路易斯,密苏里州63130,美国6肯尼迪肯尼迪物理主席,查普曼大学,加利福尼亚州奥兰治市92866,美国7量子研究所,查普曼大学研究所,Chapman University,Chapman University,Orange Orange,加利福尼亚州92866,美国92866,美国92866,美国92866,纽约,纽约,纽约,纽约。 Grenoble Alpes,中心国家德拉·雷·雷·科学(Center National de la Recherche Scientife),格勒诺布尔INP,Intitutnéel,38000法国格勒诺布尔,法国10 Majulab,CNRS-UCA-NUS-NTU-NTU国际联合研究实验室11
控制量子位的状态涉及操纵其量子态以执行所需的操作。这种操纵通常涉及应用量子门序列 [3],它们类似于经典逻辑门,但作用于量子态 [4]。这些门可以确定性地改变量子位的状态,从而产生叠加和纠缠,以及计算所需的其他量子操作。测量量子位的状态涉及确定其在特定时刻的量子态。量子位耦合到位于其物理位置附近的微波谐振器。正是通过这些谐振器,可以确定或“读出”量子位的状态。确定量子位状态的一种常用技术是色散读出法 [5]。该方法利用了这样一个事实:量子位的状态对读出谐振器的某些宏观参数(例如其谐振频率)有直接影响。
NASA 地球科学十年调查——确定的差距 作者:Xubin Zeng(亚利桑那大学)和 Graeme Stephens(NASA/加州理工学院喷气推进实验室) 简介 地球科学的量子传感对于监测、理解、预测/预测地球系统是必需的,特别是对时间尺度从几分钟到百年的高影响自然灾害和极端事件。例如,近几十年来,美国数十亿美元的天气和气候灾害数量持续增加,去年(2023 年)已达到 28 起。NASA 领导力也需要它,因为量子传感、计算和科学已经受到外国和机构越来越多的关注和投资。其他美国机构(例如国家科学基金会 (NSF)、美国能源部 (DOE))也在这一领域投入了大量资金。 亮点:NASA 地球科学飞行计划包括五个要素: