5 孟加拉国吉大港大学生物科学学院生物化学与分子生物学系,6 孟加拉国吉大港兽医与动物科学大学食品科学与技术学院,7 孟加拉国达卡达卡大学生物化学与分子生物学系,8 孟加拉国达卡发展替代大学生物技术与遗传工程系,9 孟加拉国达卡贾汉吉尔纳加尔大学生物化学与分子生物学系,10 印度尼西亚望加锡哈桑丁大学药学院药学系,11 孟加拉国达卡达卡大学药学院药学系,12 印度巴雷利 ICAR-印度兽医研究所病理学分部,13 沙特阿拉伯吉赞吉赞大学医学实验室技术系,14 专门医学实验室会诊 SMIRES,沙特阿拉伯吉赞大学,15 沙特阿拉伯吉赞大学护理与相关健康科学学院研究与科学研究部,16 土耳其布尔萨乌鲁达大学医学院,
与编码基因类似,miRNA 由 RNA 聚合酶 II 从 miRNA/MIR 基因转录成长的初级转录本,称为初级/pri miRNA(图1)。此后,pri-miRNA 被 RNaseIII 样酶(称为 DICER-LIKE (DCL 1))与其他蛋白质一起切割成前体/前 miRNA。这些前 miRNA 进一步由 DCL1 加工成 20-24 个核苷酸长的 miRNA:miRNA 双链体。然后,双链体在 3' 端被 HUA 增强子 1 甲基化,并通过 EXPORTIN-5 输出到细胞质中。然后将双链体加载到含有 ARGONAUTE (AGO) 蛋白的 RNA 诱导沉默复合物 (RISC) 中。来自 miRNA:miRNA 双链中只有一条 RNA 链被加载到 RISC 上,而另一条链被小 RNA 降解核酸酶降解。最后,加载的 miRNA 将 RISC 靶向其互补的 mRNA,因此,根据其与目标 mRNA 的互补程度,它可能导致两种结果。如果 miRNA 与目标 mRNA 高度同源,则可能导致 mRNA 的位点特异性裂解,而与目标 mRNA 的弱碱基配对则导致翻译抑制(图1)。
摘要:光电电池是一种带有光敏电极的电池,最近被提出作为一种在单个设备中同时捕获和存储太阳能的方法。尽管有报道称可以使用多种不同的电极材料进行光充电,但其整体运行机制仍不太清楚。在这里,我们使用原位光学反射显微镜研究 Li x V 2 O 5 电极中的光诱导充电。我们在三种条件下对电极进行单粒子成像:(a) 有闭路和光但没有电子电源(光充电),(b) 在有光的恒电流循环过程中(光增强),以及 (c) 有热但没有光(热)。我们证明光确实可以驱动 Li x V 2 O 5 中的锂化变化,同时保持电荷中性,可能是通过单个粒子中发生的法拉第效应和非法拉第效应的组合。我们的研究结果为光电电池机械模型提供了补充,强调了基于插层的充电和锂浓度极化效应都有助于提高光充电容量。关键词:光学显微镜、光电电池、氧化钒、原位成像
本综述的目的是研究神经营养因子 (NTF) 在多发性硬化症 (MS) 病理学中的机制作用及其作为治疗剂的潜力。MS 是一种中枢神经系统 (CNS) 慢性自身免疫性疾病,其特征是免疫介导的脱髓鞘、神经退行性病变和慢性炎症,导致进行性神经系统残疾。尽管疾病改良疗法 (DMT) 取得了进展,可以降低炎症和复发率,但仍然缺乏针对神经元修复和髓鞘再生的治疗方法。神经营养因子,包括神经生长因子 (NGF)、脑源性神经营养因子 (BDNF)、神经胶质细胞系源性神经营养因子 (GDNF) 和睫状神经营养因子 (CNTF),已被证明可通过特定信号通路促进神经发生、轴突再生和髓鞘再生。本综述综合了临床前和临床研究的结果,重点关注神经营养因子在减轻神经炎症、保护神经元免于凋亡以及促进少突胶质细胞祖细胞 (OPC) 分化和髓鞘再生中的作用。讨论了包括 NTF 跨血脑屏障 (BBB) 输送、其短半衰期以及 MS 的异质性等挑战。重点介绍了潜在的解决方案,例如先进的输送系统和个性化方法。本综述的结论是,虽然神经营养因子有望成为 MS 的治疗剂,但需要进一步研究以优化其临床应用并克服当前的障碍。关键词:多发性硬化症、神经营养因子、脑源性神经营养因子
通讯作者:Gianluigi Condorelli,医学博士,哲学博士,Humanitas 大学生物医学科学系,Via Rita Levi Montalcini 4, Pieve Emanuele 20072,米兰,电子邮件 gianluigi.condorelli@hunimed.eu;或 Marinos Kallikourdis,哲学博士,Humanitas 研究医院 IRCCS 自适应免疫实验室,Via Manzoni 56, Rozzano, 20089 米兰,意大利,电子邮件 marinos.kallikourdis@humanitasresearch.it *E. Martini、M. Cremonesi 和 A. Felicetta 贡献相同。†G. Condorelli 和 M. Kallikourdis 是共同资深作者。补充材料可在 https://www.ahajournals.org/doi/suppl/10.1161/CIRCRESAHA.124.324999 上找到。有关资金来源和披露,请参阅第 23 页。© 2024 作者。《Circulation Research》由 Wolters Kluwer Health, Inc. 代表美国心脏协会出版。这是一篇开放获取的文章,遵守知识共享署名非商业-禁止演绎许可条款,允许在任何媒体中使用、分发和复制,前提是正确引用原始作品、非商业性使用,并且未进行任何修改或改编。
5. Luiza Koop B. 等人。“黄酮类化合物、花青素、甜菜碱、姜黄素和胡萝卜素:来源、分类以及通过封装和吸附增强稳定性”。食品研究国际 153 (2022):110929。
5 加拿大魁北克省蒙特利尔市麦吉尔大学解剖学和细胞生物学系,6 加拿大魁北克省蒙特利尔市麦吉尔大学药理学和治疗学系,7 英国牛津大学药理学系,8 意大利罗马 EBRI Rita Levi-Montalcini 基金会神经药理学实验室,9 意大利罗马第二大学药学院生物系,10 意大利米兰 Casa Cura Policlinico 神经康复科学系,11 法国巴黎医院大道 INSERM U 1127 CNRS UMR 7225 脑与脊柱研究所 (ICM),12 法国巴黎 AP-HP Pitié-Salpêtrière 医院神经内科记忆与阿尔茨海默病研究所 (IM2A),13比萨,意大利,比萨,
保障机制是澳大利亚在国家一级的主要排放减少框架,适用于约220个工业设施,其排放量超过100,000吨二氧化碳等效于直接(SCOPE 1)排放。改革于2023年通过,这意味着更严格的“基线”(实际上是排放限制)将适用于覆盖的设施,默认设置为4.9%。这意味着覆盖的设施将需要采取现场措施,以减少其排放量,或购买碳信用额以抵消其影响,并以实现澳大利亚2050年净零目标的总体目标。2