双眼立体视觉依赖于两个半球视网膜之间的成像差异,这对于在三维环境中获取图像信息至关重要。因此,与生物眼的结构和功能相似性的视网膜形态电子始终非常需要发展立体视觉感知系统。在这项工作中,开发了基于Ag-Tio 2纳米簇/藻酸钠纤维的半球光电磁带阵列,以实现双眼立体视觉。由等离子热效应引起的全光调制和Ag-Tio 2纳米群体中的光激发,以实现像素内图像传感和存储。广泛的视野(FOV)和空间角度检测是由于设备的排列和半球形几何形状的入射角依赖性特征而在实验上证明的。此外,通过构造两个视网膜形态的恢复阵列,已经实现了基于双眼差异的深度感知和运动检测。这项工作中证明的结果提供了一种有希望的策略,以开发全面控制的回忆录,并促进具有传感器内架构的双眼视觉系统的未来发展。
由于简单的金属/绝缘子/金属(MIM)结构,快速速度,低功耗和高积分密度,因此已被认为是非易失性记忆的有前途的候选日期。1 - 3横梁阵列体系结构是一种非常有效且简单的手段,可实现高密度积分,较小的存储器大小为&4 f 2。4,5由于通过欧姆和基尔chhoQ的定律直接完成点产品,因此Memristor Crossbar阵列非常适合某些特定的C应用,例如,神经形态计算系统。6 - 11然而,最先进的备忘录的神经形态计算中的阵列大小很小,从而限制了回忆计算系统的实际应用。为了实现大规模阵列,稳定且均匀的电阻开关设备是基本要求。12此外,Sneak Path问题是由阵列中未指定的单元引起的泄漏电流造成的严重挑战,这会导致阵列大小的限制并读取/写入错误。要克服潜行路径问题,选择设备(选择器),例如二极管,13
由于简单的金属/绝缘子/金属(MIM)结构,快速速度,低功耗和高积分密度,因此已被认为是非易失性记忆的有前途的候选日期。1 - 3横梁阵列体系结构是一种非常有效且简单的手段,可实现高密度积分,较小的存储器大小为&4 f 2。4,5由于通过欧姆和基尔chhoQ的定律直接完成点产品,因此Memristor Crossbar阵列非常适合某些特定的C应用,例如,神经形态计算系统。6 - 11然而,最先进的备忘录的神经形态计算中的阵列大小很小,从而限制了回忆计算系统的实际应用。为了实现大规模阵列,稳定且均匀的电阻开关设备是基本要求。12此外,Sneak Path问题是由阵列中未指定的单元引起的泄漏电流造成的严重挑战,这会导致阵列大小的限制并读取/写入错误。要克服潜行路径问题,选择设备(选择器),例如二极管,13
基于忆阻器的神经形态计算在高速、高吞吐量信号处理应用(如脑电图 (EEG) 信号处理)中显示出巨大潜力。尽管如此,单晶体管单电阻 (1T1R) 忆阻器阵列的大小受到器件非理想性的限制,这阻碍了大型复杂网络的硬件实现。在本文中,我们提出了深度可分离卷积和双向门循环单元 (DSC-BiGRU) 网络,这是一种基于 1T1R 阵列的轻量级且高度稳健的混合神经网络,通过混合 DSC 和 BiGRU 块,能够在时间、频率和空间域中有效处理 EEG 信号。在确保网络分类准确性的同时,网络规模减小了,网络稳健性提高了。在模拟中,通过统计分析将测得的 1T1R 阵列的非理想性带入网络中。与传统卷积网络相比,在阵列成品率95%、容错率5%的条件下,网络参数减少了95%,网络分类准确率提高了21%。该工作表明,基于忆阻器阵列的轻量级、高鲁棒网络对于依赖低消耗和高效率的应用具有巨大的前景。
鉴于数据量的越来越多,有一个显着的研究重点是硬件,可提供低功耗的高计算性能。值得注意的是,神经形态计算,尤其是在利用基于CMO的硬件时,已经表现出了有希望的研究成果。此外,越来越强调新兴突触设备(例如非挥发性记忆(NVM)),目的是实现增强的能量和面积效率。在这种情况下,我们设计了一个硬件系统,该硬件系统采用了1T1R突触的一种新兴突触。Memristor的操作特性取决于其与晶体管的配置,特别是它是位于晶体管的源(MOS)还是排水口(MOS)。尽管其重要性,但基于Memristor的操作电压的1T1R配置的确定仍然不足以在现有研究中探索。为了实现无缝阵列的扩展,至关重要的是要确保单位单元格适当设计以从初始阶段可靠地操作。因此,对这种关系进行了详细研究,并提出了相应的设计规则。香料模型。使用此模型,确定最佳晶体管选择并随后通过仿真验证。为了证明神经形态计算的学习能力,实现了SNN推理加速器。此实现利用了一个基于在此过程中开发的验证的1T1R模型构建的1T1R数组。使用降低的MNIST数据集评估了精度。结果证明了受大脑功能启发的神经网络操作成功地在高精度而没有错误的硬件中实现。此外,在DNN研究中通常使用的传统ADC和DAC被DPI和LIF神经元取代,从而实现了更紧凑的设计。通过利用DPI电路的低通滤波器效应来进一步稳定该设计,从而有效地降低了噪声。
由于其非易失性和多位属性,回忆录已被广泛用作神经形态体系结构中的突触重量元素。但是,它们用于定义和重新编程的用于网络连接性已被忽略。在这里,我们提出,实施和实验证明了Mosaic,Mosaic是基于一系列Memristor横杆的神经形态结构。第一次,我们不仅使用分布式的非易失性备忘录来计算,而且用于路由(即定义网络连接性)。马赛克特别适合实施可重新配置的小世界图形模型,具有密集的局部和稀疏的全局连接性 - 在大脑中广泛发现。我们在数学上表明,随着网络的扩大,马赛克所需的记忆比传统的备忘录方法更少。我们在马赛克上绘制一个尖峰的复发性神经网络,以求解心电图(ECG)异常检测任务。与基于微型控制器和基于地址的代表性处理器相比,在相应的一个和两个数量级降低能量需求的降低中,镶嵌的优势在相等的镶嵌物中的优势是相等或更好的。马赛克有望根据基于记忆和能量较少的图理论原理设计神经形态硬件的新方法。
11:50‐12:05 4A‐7 利用离子液体中 Cu 和 Ag 离子的氧化还原反应开发物理储层装置 Dan Sato 东京理科大学,日本东京 4B‐7 使用忆阻器神经元和完全耗尽的绝缘体上硅场效应晶体管突触装置的 3D 神经形态系统 Yu‐Rim Jeon 汉阳大学,韩国首尔
摘要 — 脑启发式方法可以有效地分析生物神经网络的活动,并以冯·诺依曼架构无法实现的能效解决计算难题,这表明对神经元通信和功能的理解有了显著的提高。在这里,我们提出了一种脑启发式多模态信号处理系统,该系统具有有机忆阻器阵列,可以潜在地整合信号传感、存储和计算。为了促进多模态信号处理系统的设计,我们使用了四个组件。首先,我们提出了一个多模态信号传感模块,主要负责多模态(图像、回声、嗅觉、肌肉和味觉)信号的收集、融合和存储。其次,在制造白蛋白忆阻器后,构建了一个高密度交叉点忆阻突触阵列,以实现计算、数据存储和通信层之间的密集连接。第三,考虑到大脑区域的结构和功能,我们展示了一个用于分层学习的通用学习模块,它可以识别和想象多模态信息。最后设计了必要的外围电路模块(包括无胜者竞争功能电路、模拟数字转换器、数字模拟转换器、脉冲调制器等)。值得注意的是,我们的系统可以每秒捕获大量数据并对多模态信号进行原位处理。这项研究有望帮助实现纳米材料与神经形态计算系统和节能集成电路的深度集成。
将计算工作负载从云转移到边缘设备可以显着证明推理和学习的总体延迟。相反,此范式偏移加剧了边缘设备上的资源约束。受神经过程启发的神经形态计算体系结构是边缘设备的自然基板。他们是共同存在的记忆,原位训练,能量效率,高记忆密度和计算能力,以较小的形式。由于这些特征,在最近的过去,混合CMOS/MEMRistor神经形态计算系统迅速扩散。但是,这些系统中的大多数具有有限的可塑性,靶向空间或时间输入流,并且未在大规模的异质任务上证明。设计可扩展的神经形态系统存在关键的知识差距,该系统可以支持边缘设备上的时空输入流的混合可塑性。
在动态环境中运行的边缘设备迫切需要能够持续学习而不会发生灾难性遗忘。这些设备中严格的资源限制对实现这一目标构成了重大挑战,因为持续学习需要内存和计算开销。使用忆阻器设备的交叉开关架构通过内存计算提供能源效率,并有望解决此问题。然而,忆阻器在电导调制中通常表现出低精度和高可变性,这使得它们不适合需要精确调制权重大小以进行整合的持续学习解决方案。当前的方法无法直接解决这一挑战,并且依赖于辅助高精度内存,导致频繁的内存访问、高内存开销和能量耗散。在这项研究中,我们提出了概率元可塑性,它通过调节权重的更新概率而不是大小来整合权重。所提出的机制消除了对权重大小的高精度修改,从而消除了对辅助高精度内存的需求。我们通过将概率元可塑性集成到以低精度忆阻器权重在错误阈值上训练的脉冲网络中,证明了所提机制的有效性。持续学习基准的评估表明,与基于辅助内存的解决方案相比,概率元可塑性实现了与具有高精度权重的最先进的持续学习模型相当的性能,同时用于附加参数的内存消耗减少了约 67%,参数更新期间的能量消耗减少了约 60 倍。所提出的模型显示出使用低精度新兴设备进行节能持续学习的潜力。