摘要 — 脑启发式方法可以有效地分析生物神经网络的活动,并以冯·诺依曼架构无法实现的能效解决计算难题,这表明对神经元通信和功能的理解有了显著的提高。在这里,我们提出了一种脑启发式多模态信号处理系统,该系统具有有机忆阻器阵列,可以潜在地整合信号传感、存储和计算。为了促进多模态信号处理系统的设计,我们使用了四个组件。首先,我们提出了一个多模态信号传感模块,主要负责多模态(图像、回声、嗅觉、肌肉和味觉)信号的收集、融合和存储。其次,在制造白蛋白忆阻器后,构建了一个高密度交叉点忆阻突触阵列,以实现计算、数据存储和通信层之间的密集连接。第三,考虑到大脑区域的结构和功能,我们展示了一个用于分层学习的通用学习模块,它可以识别和想象多模态信息。最后设计了必要的外围电路模块(包括无胜者竞争功能电路、模拟数字转换器、数字模拟转换器、脉冲调制器等)。值得注意的是,我们的系统可以每秒捕获大量数据并对多模态信号进行原位处理。这项研究有望帮助实现纳米材料与神经形态计算系统和节能集成电路的深度集成。
主要关键词