摘要 — 近年来,受脑启发的超维计算 (HDC) 在医疗诊断、人类活动识别和语音分类等广泛应用中展示了良好的性能。尽管 HDC 越来越受欢迎,但其以内存为中心的计算特性使得联想内存实现由于海量数据的存储和处理而能耗巨大。在本文中,我们提出了一个系统的案例研究,利用 HDC 的应用级错误恢复能力,通过电压调节来降低 HDC 联想内存的能耗。对各种应用的评估结果表明,我们提出的方法可以在联想内存上节省 47.6% 的能耗,而准确度损失不超过 1%。我们进一步探索了两种低成本的错误屏蔽方法:字屏蔽和位屏蔽,以减轻电压调节引起的错误的影响。实验结果表明,提出的字屏蔽(位屏蔽)方法可以进一步提高节能效果,最高可达 62.3%(72.5%),准确度损失不超过 1%。
主要关键词