环境档案,例如湖泊沉积物,过去和现在生态系统的港口DNA。然而,我们对湖泊系统中沉积DNA的出处,沉积和分布的理解在很大程度上是未知的,这限制了派生时空推断的广度。通过使用元编码在大湖中绘制水生和陆地分类单元的分布,我们表征了沉积DNA的空间异质性,并指出了其潜在的驱动因素。分类群的组成在湖中的地理梯度之间有所不同,DNA的空间分布与生物的范围和生命模式有关。外源分类单元,例如高山植物,在流动河口附近的检测最可靠。我们的数据表明,沉积性DNA正在反映环境中生物体和有机残留物的镶嵌分布,并且来自不同海拔,生物群或其他多样性边界的湖泊的单个位置并不能捕获周围地区的全部动力学。
古构造对于我们对物种对气候变暖的反应的理解至关重要,但是这些档案在北极极为罕见。在这里,我们将形态学分析和散装骨元编码结合在一起,以投资于挪威高纬度Storsteinhola洞穴系统(68°50'n 16°22'e)密封的骨沉积物的独特年代。该沉积物的历史可追溯到冰川晚期的气候变暖时期[〜13,000个校准年前(Ka Cal B.P.)]到全新世热最大值(〜5.6 ka cal B.P.)。古生物学分析使我们能够利用1000秒的形态无法识别的骨碎片,从而产生了具有40种不同分类单元的高分辨率序列,其中包括以前在此处找到的物种。我们的记录揭示了在北极圈上方的海洋和陆地环境中,作为过去变暖时期的一种自然反复出现的现象,为当今正在进行的生态系统范围的反应提供了基本的见解。
在突然出现之后,并随后努力支持贝鲁加鲸(Delphinapterus Leucas)的生存,据推测以前曾在挪威海岸接受过训练,我们研究了该动物在野外读书的能力。饮食DNA(DDNA)分析用于在整个康复过程中评估饮食,以及在返回无助的觅食和自我进食期间。在整个过程中收集的粪便的质量编码,证实了贝鲁加鲸的饮食与当地猎物的多样化。这些发现表明了改善的觅食行为,并且在托管护理的依赖期之后,该人的能力恢复了狂野的觅食。也可以获得适当的消化率的新见解,以及通过DDNA分析进行猎物检测的时间窗口。除了此处介绍的案例研究之外,我们还证明了DDNA分析的力量是评估大型哺乳动物饮食的非侵入性工具,并跟踪了在囚禁和康复计划中释放之后对野生生活中适应生活的进度。
昆虫的生态成功通常取决于它们与有益的小动物的联系。然而,昆虫的发育涉及反复的蜕皮,这可能会对其微生物群落产生影响。在这里,我们调查了半代谢昆虫的微生物组的影响以及如何影响孕产妇护理是否可以调节这些影响。,我们饲养了有或没有飞蛾的欧洲耳朵少年,并使用16S rRNA metabarcoding分析了鸡蛋核心微生物组的原核分数,最近和在四个发育阶段和由此产生的成年人处于四个发育阶段和旧的蜕皮个体。获得的218个样品表明,在发育过程中,微生物组的分流性质不断变化,并且这些变化与细菌生物标志物有关。令人惊讶的是,这些变化不是在换羽期间发生的,而是在某些发育阶段的开始和结束之间。我们还发现,即使与母亲的最后一次接触是在成年后的两个月之前,也可以使用幼体和成年人的微生物组。总体而言,这些结果为我们对半脂质昆虫中原核微生物组(在)稳定性的理解及其脱离蜕皮的独立性提供了新的见解。更常见的是,他们质疑通过孕产妇护理在这种行为具有兼职的物种中维持家庭生活中微生物组获取的作用。
在过去的几年中,位于洞穴内的多年生冰矿床已经唤醒了研究微生物群落的兴趣,因为它们代表了气候变化的独特冰圈档案。自20世纪初以来,温度逐渐升高,据估计,到本世纪末,平均温度的升高可能约为4.0°C。在全球范围内,在全球范围内,越野洞的冰矿石的冰矿床正在经历明显的回归。在这种类型的洞穴中,在比利牛斯山脉南部的cotiella massif上是欧洲最南端的研究之一。这些类型的洞穴容纳了迄今为止几乎没有探索的微生物群落,因此他们的研究是必要的。在这项工作中,使用元法编码技术鉴定出菌落冰洞A294的微生物群落。此外,还进行了研究工作,以分析冰的年龄和组成如何影响细菌和微核细胞种群的组成。最后,使用蛋白质组学技术研究了气候变化对允许微生物以升高温度生活的细胞机制的体内影响。
硅藻等复杂微观且具有工业重要性的微藻群体的好处并不为人所知,最近它们的工业潜力让科学界大吃一惊。硅藻具有在恶劣条件下生存的能力,并且具有不同的孔隙结构和明确的细胞壁,使其成为生产各种工业产品的理想细胞机器。随着显微镜、宏条形码、分析和遗传工具的进步,硅藻细胞在工业应用中的前景也显著增加。此外,众所周知,工业和学术界对遗传工具的使用方式发生了重大变化,从而对硅藻的各种分子成分进行了明确的表征。可以以经济高效的方式进行硅藻培养的初级培养、收获和进一步的下游加工。硅藻具备成为制药、纳米技术和能源替代原料的所有品质,从而实现可持续经济。本综述试图收集硅藻在生物技术、生物医学、纳米技术和环境技术等不同工业应用方面的重要进展。
沿海和河口环境处于内源性和外生压力下,危害居住的生物群的生存和多样性。多个(a)生物应激源和Holobiont相互作用的可能协同作用的信息在易北河河口大部分缺失,但对于估计对动物生理学的不可预见的影响至关重要。在这里,我们试图利用宿主转录RNA-seq和Gill Mucus Microbial 16S rRNA MetabarCoding数据,并在网络分析方法中结合了生理和非生物测量方法,以反应多个压力源对少数压力源对少数压力的影响,属于Lar eStuaries的Juevenile Sander Lucioperca。我们发现以g组织特异性转录响应为特征的中鞘区域与渗透传感和组织重塑相匹配。肝动物转录组强调,来自高度浊度区域的Zander经历了受损的身体状况支持的饥饿。潜在的致病细菌,包括Shewanella,acinetobacter,Aeromonas和Chryseobacterium,沿淡水过渡和氧气最小区域占据了吉尔微生物组。它们的发生与宿主ill中强烈的适应性和先天的转录免疫反应相吻合,并增强了肝组织中的能量需求,从而支持其潜在的致病性。总体而言,我们证明了信息从将OMIC数据整合到鱼类生物监测到鱼类的生物监测并指出具有疾病潜力的细菌物种所获得的信息。
抽象的元编码已经提供了对微生物多样性的前所未有的见解。在许多研究中,简短的DNA序列被纳入较低的Linnaean等级,排名组(例如属)是生物多样性分析的单位。这些分析假设Linnaean等级在生物学上具有有意义的,并且排名相同的组是可比的。我们为海洋浮游硅藻使用了一个元尺寸数据集来说明这种方法的限制。我们发现,20个最丰富的海洋浮游硅藻属的年龄从4到1.34亿年不等,这表明属的不相等,因为有些人比其他属的时间更多。然而,物种丰富度在很大程度上与属年龄无关,这表明属中物种丰富度的差异通过物种和灭绝率的差异来更好地解释。分类学分类通常不会反映系统发育,因此属级分析可以包括系统发育嵌套的属,进一步的基于等级的分析。这些结果强调了系统发育在理解微生物多样性模式中必不可少的作用。
DNA条形码是加速物种鉴定和补充物种划界的绝佳工具。此外,DNA条形码参考文献是生物多样性监测,保护或生态学中任何元法编码研究的决定性主链特征。但是,在某些分类单元中,DNA条形码不能以令人满意的成功率产生,因此这些群体将在任何基于条形码的物种清单中都在很大程度上缺少。在这里,我们为eurytomidae(膜翅目,沙尔西多德亚)提供了定制的DNA条形码向前底漆,将高质量DNA条形码的成功率从33%提高到88%。eurytomidae是一种严重研究的,分类学上具有挑战性的,物种丰富的群,主要是寄生的黄蜂。较高的物种数量,多样化的生态作用以及广泛和共同存在确定Eurytomidae是陆地生态系统中众多关键家庭之一。现在可以在研究和监测陆地动物区系时包括eurytomidae,强调基于条形码的方法将需要定期使用不同的引物来避免其数据和推论中的偏见。新的DNA条形码方案也是我们对小组的综合分类研究的先决条件,旨在划界和表征Central
地下环境是地球最大的微生物寿命之一。,直到最近,我们还缺乏适当的数据来准确区分全球分布的海洋和陆地表面和地下微生物组。在这里,我们分析了478个古细菌和964个细菌元编码数据集和147个元基因组,来自不同分布的环境。微生物多样性在局部至全球尺度的海洋和陆地微生物中相似。然而,社区组成在海洋和土地之间大不相同,证实了系统发育鸿沟,反映了动植物多样性的模式。相反,社区组成在表面与地下环境之间重叠,支持多样性连续性而不是离散的地下生物圈。微生物寿命的差异似乎比表面和地下之间的差异更大。陆地微生物组的多样性随深度减小,而海洋地下多样性和与培养的分离物竞争对手的系统发育距离或超过表面环境的距离。我们确定了不同的微虫群落组成,但对于地球地面和表面环境而言,微生物多样性相似。