机械超材料的独特机械性能源于其结构设计而不是物质成分,它在工程应用中广受欢迎。尤其是,与增材制造(AM)相比,自组装技术的最新进展为具有无与伦比的特征尺寸控制和可伸缩性提供了具有无与伦比的特征尺寸控制和可伸缩性的材料的潜力。然而,该领域仍处于早期阶段。从这个角度来看,我们首先概述了最先进的自组装技术,重点是共聚物和胶体晶体自组装过程。然后,我们讨论该研究领域的当前挑战和未来机会,重点介绍了新颖的制造方法,对高通量表征方法的需求以及机器学习(ML)(ML)和实验室自动化的整合。鉴于在所有这些领域的最新进展,我们预见了由自组装技术制造的机械超材料,这些技术会影响各种应用,这些应用依赖于轻巧,坚固和坚固的材料。[doi:10.1115/1.4064144]
org ), the Foundation for Research and Technology - Hellas (FORTH) , the University of Crete , and the National and Kapodistrian University of Athens , this Congress follows the success of Metamaterials 2007-2023 and continues the traditions of the highly successful series of International Conferences on Complex Media and Metamaterials ( Bianisotropics ) and Rome International Workshops on Metamaterials and Special Materials for Electromagnetic Applications and电信。国会将提供一个独特的主题论坛,以分享超材料研究的最新结果。它将汇集工作,物理,应用数学和材料科学社区,从事人造材料及其在电磁/光学,声学/声学/机械,运输和多物理学中的应用。
超材料,源于希腊语“meta”,意为“超越”,是一种具有独特属性和能力的人造材料。其显著特征在于其结构,由重复的晶胞组成。这些材料的属性主要由晶胞的几何形状而非材料成分决定,在天然材料中并不存在。主动超材料是超材料的一个子类别,其晶胞能够响应外部触发或刺激而改变其几何形状,从而相应地改变其属性。通过操纵这些刺激,主动超材料展现出可调节属性的卓越能力,从而显著增强其功能性和适用性。在众多不同类型的主动超材料中,磁机械超材料通过应用外部磁场(一种快速、可逆且不受束缚的驱动方法)具有独特的形状重构和属性调节优势。图 1(a) 展示了磁机械超材料的一般机制。通常,磁机械超材料的晶胞部分具有专门设计的磁化方向。当受到外部磁场(通常由永磁体或电磁线圈产生)时,磁机械超材料的磁化部分会经历磁扭矩,从而导致形状转变为致动模式。该过程是可逆的,在移除磁场后,或者在某些情况下施加反向磁场后,磁机械超材料会恢复到其初始模式。此外,制造磁机械超材料有两种策略。第一种选择是将磁性粒子嵌入软聚合物材料中,形成磁性软复合材料 [2、3],第二种选择是插入永久刚性磁体
和跨度•时间空间调节结构•主动和无吸收的超材料•手性和双异构性复合材料•具有极端参数的超材料•量子和超导型超材料 - 材料•碳纳米纤维,其他2D材料和其他2D材料•非元素•近距离Metamsials•近距离式METAMIALS METAMIADS METAMIALS METAMIALS• Photonic crystals and EBG structures • Antenna and absorber applications of metamaterials • RF and microwave metamaterials: design, properties, applications • Metamaterials for 5G (and beyond) applications • Millimeter wave/THz metamaterials and applications • Optical metamaterials and their applications • Acoustic metamaterials • Mechanical and elastic metamaterials • Metamaterials for nanoelectronics, nanophotonics and nanoantennas • Metamaterials for control of heat flow and radiation • Metamaterials for quantum electronics • Metamaterials for sensing • Metamaterials in naval and aeronautic applications • Biological and biomedical applications of metamaterials • Super-resolution and near-field imaging: effects and devices • Transformational electromagnetics,弹性动力学,流体动力学
超材料可以拥有独特的特性,使其在太空技术中必不可少。作为示例,它们操纵电磁波的能力允许高级通信系统,而它们的结构属性为空间系统提供了轻巧且健壮的解决方案。
因此,量子特性对于各种各样的主题都很有趣,例如量子化学计算,特别是在天体化学[4]、量子计算机[5]、量子存储器[6]、加密[7, 8]、量子发光装置[9],甚至全球规模的量子通信[10]。在例子中,混合材料在不同尺度上产生了不同的影响,量子特性的产生从亚原子尺度到宏观尺度及更远。因此,应该强调在更短尺度上发展的重要性,包括用于量子存储器的硅中单个高自旋核的相干电控制[11]和可能影响量子信息处理[12]、宏观物体的检测和分辨[13]的量子态干涉。这些量子应用使用了不同的理论模型,例如量子粒子、光子和量子态,此外还有多学科领域,这些领域推动了量子光学、纳米光学、微电路和更高宏观尺度的光学设计和工程的发展。在这里,石墨烯和碳的同素异形体可以根据凝聚电子物质 [14] 与自由电子轨道 [15] 以及可用的伪电磁特性等特性以不同的方式参与。因此,由小原子厚度形成的石墨烯表现出稳定的化学结构和具有半金属特性的薄膜。它们微小的重叠价带和导带表现出强烈的双极电场效应,例如当电压门控增加时,每平方厘米中电子和空穴的浓度很高,并且在室温下具有迁移率 [16]。这些特性基于特定的电子 sp2 轨道,这些轨道可以在约 0.335 nm 的自由间隔长度内相互作用,产生伪
本文介绍了一种用于内隔墙的船用夹层板的屈曲分析研究,该夹层板具有多层石墨烯纳米片 (GPL)/聚合物复合面板。芯层考虑了三种不同的形状:方形、蜂窝状和具有负毒比的凹入蜂窝状。假设面板由石墨烯纳米片 (GPL) 增强的聚合物基质组成。使用 Halpin-Tsai 的微机械方法确定顶层和底层的有效杨氏模量以及有效泊松比和质量密度的混合规则。基于新的五阶剪切变形理论对墙夹层板进行建模。采用汉密尔顿原理获得板运动的控制微分方程。所提出的公式和结果的准确性得到了验证,并通过与文献中可用的结果高度一致证明了其准确性。基于我们的结果,我们指出了蜂窝芯的蜂窝结构对船用内墙夹层板临界屈曲载荷的影响。此外,还利用 Galerkin 方法说明了厚度、纵横比、石墨烯纳米片重量分数和几何参数对临界屈曲载荷的影响。这项研究的成果可能有助于创造更高效的工程应用,特别是在海洋和船舶工业中。
机械超材料最近成为一种有效的平台,可用于设计由几何形状而非成分支配的机械行为系统。[5–8] 虽然最初的努力集中在设计具有线性区域负特性的超材料,[9–12] 但最近有研究表明,通过在架构中引入易发生弹性不稳定的细长元素,可以触发高度非线性响应(通常伴随着较大的内部旋转)。[5,13] 这些非线性行为不仅表现出非常丰富的物理特性,而且还可用于实现高级功能,如形状变形[14,15]、能量吸收[3,16–18]和可编程性。[19–21] 虽然众所周知可以通过改变底层几何形状来调整这些功能,但识别导致目标非线性响应的架构并非易事。已经建立了稳健而高效的算法来指导线性范围内目标响应结构的设计。这些算法包括基于梯度的方法,如形状 [22] 和拓扑 [23] 优化,以及机器学习算法。[24–27] 然而,这些方法不能直接应用于非线性机械超材料的逆向设计。这是因为非线性系统的能量图景通常显示由大能量屏障隔开的多个最小值,因此导航非常具有挑战性。为了有效地探索这样的能量图景,已经成功使用了元启发式算法,如进化策略 [28–30]、遗传算法 [31] 和粒子群优化 [32]。此外,由于这些算法需要多次求解正向问题,最近的努力集中在通过将它们结合起来降低计算成本
关于 PI:张云兰 (Emma) 我获得了俄亥俄州立大学土木工程学士学位,之后在普渡大学攻读博士学位,研究机械超材料和仿生材料。超材料经过精心设计,具有天然材料所不具备的新颖特性。之后,我在牛津大学工作了大约两年,将这些知识应用于可部署医疗设备的设计。这些经历让我看到了土木工程教育的多功能性。我喜欢与学生一起工作,就像进行研究一样,并邀请对开发创新结构感兴趣的学生申请加入我的实验室。