过去几十年来,微电子行业一直在推动小型化理念的深入人心。更小的设备意味着更快的运行速度、更便携和更紧凑的系统。这种小型化趋势具有感染力,纳米技术和薄膜加工的进步已经蔓延到广泛的技术领域。这些技术进步对一些领域产生了重大影响,包括二极管激光器、光伏电池、热电材料和微机电系统 (MEMS)。这些设备的设计改进主要来自实验和宏观测量,例如整体设备性能。这些设备和材料的微观特性的大多数研究都集中在电气和/或微观结构特性上。目前,许多热问题在很大程度上被忽视,限制了现代设备的性能。因此,这些材料和设备的热性能对于高科技系统的持续发展至关重要。人们对薄膜能量传输机制的了解需求催生了一个新的研究领域,即微尺度传热。微尺度传热只是在必须考虑单个载体或连续模型失效时对热能传递的研究。传热的连续模型经典地是能量守恒定律与热传导的傅立叶定律的结合。类似地,当连续流体力学模型不足以解释某些现象时,就出现了“气体动力学”的研究。微尺度传热领域具有一些惊人的相似之处。相似之处之一是方法论。通常,第一次建模尝试是修改连续模型,以便将微尺度因素考虑在内。更常见且稍微困难的方法是应用玻尔兹曼传输方程。最后,当这两种方法都失败时,通常采用计算详尽的分子动力学方法。下面将更详细地讨论这三种方法和具体应用。图 18.1 演示了电子(金属薄膜中的主要热载体)散射的四种不同机制。所有这些散射机制对于微尺度传热的研究都很重要。块体金属中电子的平均自由程通常在 10 到 30 纳米的数量级上,其中电子晶格散射占主导地位。然而,当薄膜厚度与平均自由程数量级相同时,边界散射就变得很重要。这被称为尺寸效应,因为薄膜的物理尺寸会影响传输特性。薄膜可以使用多种方法并在各种条件下制造。这可能会对薄膜的微观结构产生严重影响,进而影响缺陷和晶界散射。最后,当被超短脉冲加热时,电子系统会变得非常热,以至于电子-电子散射会变得非常明显。因此,微尺度传热需要考虑微观能量载体和各种可能的散射机制。
Exaddon的Ceres µAM系统通过局部电沉积打印高电导金属对象。该系统将直接在预预生使的芯片和Micropcb上打印独立的结构,例如支柱,针和线圈。打印在室温下发生,不需要后处理,并且与IC和PCB制造步骤兼容。分辨率为<1 µm,结构可以以微米精度位于印刷表面上。可能的纵横比为100:1。应用包括半导体探针测试,神经接口/BCIS和MMWAVE/5G/THZ组件。
纳米热剂等纳米含能材料通常由单质金属(如铝)与金属氧化物(即具有氧键的金属,例如铁锈)组合而成;前者为燃料,后者为氧化剂。3 与“中观”传统配方和常规炸药相比,这些材料具有更高的反应速率和能量产率,但也带来了这些小尺度反应所特有的问题。最近,人们对纳米材料的物理和化学性质的认识已开始着手解决这些问题,具有更高能量产率的配方现在有望应用于微型军事系统,并有望成为下一代炸药和推进剂。这是因为它们对撞击、摩擦和冲击波的敏感度降低,能量释放和燃烧速率增加。4 这些特性使它们比目前的弹药填充物更安全。
摘要。增材制造 (AM) 是一种先进的方法,可逐层制造复杂零件,直至达到所需的设计。激光粉末床熔合 (L-PBF) 用于生产高分辨率的零件,因为层厚度低。L-PBF 基于激光束和材料的相互作用,其中粉末材料被熔化然后凝固。这发生在 0.02 秒的短时间内,使得整个过程难以实时研究。研究表明,数值方法的发展和模拟软件的使用可以理解激光束和材料的相互作用。这种现象是理解材料在熔化状态下的行为以及 L-PBF 工艺生产的零件的机械性能的关键,因为它与熔化的粉末材料的凝固直接相关。需要在微观和中观尺度上详细研究激光束和材料的相互作用,因为它可以提供更好的理解并有助于开发用于 L-PBF 工艺的给定材料。本综述全面了解了 AM 中使用模拟的背景以及感兴趣的特征的不同模拟尺度。
摘要:我们评估了一组模型中的中尺度搅拌的表示,以根据北大西洋示踪剂释放实验(Natre)收集的微结构数据得出的估计值。我们从法拉利和波尔津的大约温度差异预算框架中大量汲取灵感。该框架假设温度差异的两个来源远离边界:首先,大规模平均垂直梯度通过小规模的湍流垂直搅拌;其次,中尺度涡流对大规模平均层梯度的横向搅拌。温度差异被转化,并以微观结构观测值估算的速率x进行平均转移量表以在微观尺度上进行最终耗散。海洋模型通过垂直混合参数化代表这些途径,以及沿等副侧面混合参数化(如果需要的话)。我们评估后者作为Natre数据集的残差的差异速率,并在一组模型模拟中与参数化表示形式进行比较。我们发现,由于在平行的海洋程序2(POP2)1/10 8模拟中,横向搅拌引起的变量产生很好地同意,并且在估计的误差栏内,并根据NATRE估计推断出来。在其他扩散率估计值中不存在这种元素值,这表明在解释ECCOV4R4调整后的侧向扩散率时需要补偿错误和谨慎。pop2 1 8模拟以及估计海洋版本4版本4(ECCOV4R4)模拟的循环和气候模拟似乎通过应用横向扩散率来消散数量级过大的差异,与NATRE估计相比,尤其是低于1250 m。 ECCOV4R4-调整后的横向扩散率升高,而微观结构表明X升高来自中尺度搅拌。
激光能量的作用下,基质的性质(包括其化学性质、电导率和微图案)会影响样品的电离效率,从而影响测量灵敏度。[8–11] 例如,微米级孔可用于分离不同成分的样品,以便分别进行分析。[12–14] 孔阵列还兼容主动 [15,16] 或被动上样技术,[12,17] 以简化分析样品的制备。然而,MALDI-MS 要求在分析前将样品干燥。当液滴在平面上干燥时,由于咖啡环效应,它们往往会将分析物分布在周边。[18,19] 圆柱形孔中也会发生类似的过程,导致沿周边出现沉淀 [20,21],因为激光被孔壁遮挡,信号受到抑制。这两种情况下的结果是灵敏度降低,测量变异性增加,这是由于样品点的不均匀性造成的。 [18,22]
据报道,通过直接测量原位施加不同量机械刺激后的发射变化,可以在微/纳米尺度上通过机械荧光变色活性进行力感应。[24,30,31,33–36] 然而,仍有一个问题有待探索,那就是材料的恢复。发射变化与施加的力有关,是由材料的形态变化引起的。[20–50] 这意味着,在最初施加力之后,后续的传感事件需要恢复原始形态——这个过程并不那么简单,因为这通常需要热退火[38]、溶剂熏蒸[25,27]或重结晶。 [20–22,37] 在基于 Au(I) 复合物 [28] 芘 [39,40] 蒽 [41,42] 四苯乙烯 [43,44] 吲哚基苯并噻二唑 [45] 三苯胺 [46] 硼配位 β -二酮复合物 [47] 和六硫代苯 [48] 的衍生物中观察到了自我恢复,即在环境条件下被划伤/研磨的材料自发恢复到初始状态(吸收、发射和形态)。然而,许多 MFC 活性材料尚未被开发用于多用途力传感应用,这不仅是因为此类研究所需仪器的复杂性 [24,30,31,33–36],还因为缺乏导致可逆性的分子设计 [40] 和对自我恢复机制的清晰理解。[30,45]
大脑需要在神经元和大规模大脑区域之间进行有效的信息传递。大脑连接遵循可预测的组织原则。在细胞层面,较大的超颗粒锥体神经元具有更大、更多分支的树突树、更多突触,并执行更复杂的计算;在宏观尺度上,区域到区域的连接显示出多样化的架构,高度连接的枢纽区域促进了复杂的信息整合和计算。在这里,我们探讨了这样一种假设,即大规模区域到区域连接的分支结构遵循与神经元尺度类似的组织原则。我们检查了五个人类捐赠者大脑(1 名男性,4 名女性)的 10 个皮质区域的超颗粒锥体神经元(300 1)基底树突树的微尺度连接。树突复杂性被量化为分支点数、树长、树突棘数、树突棘密度和整体分支复杂性。高分辨率弥散加权 MRI 用于构建皮质皮层布线的白质树。使用与树突树相同的方法来检查所得白质树的复杂性,结果表明,异模关联区域具有比主要区域更大、更复杂的白质树(p,0.0001),并且宏观尺度复杂性与微观尺度测量并行,包括输入数量(r=0.677,p=0.032)、分支点(r=0.797,p=0.006)、树长度(r=0.664,p=0.036)和分支复杂性(r=0.724,p=0.018)。我们的研究结果支持整合理论,即大脑连接遵循神经元和宏观尺度上的类似连接原则,并为研究大脑条件下多组织层面的连接变化提供了一个框架。
标题 可控凹度微碗可用于精确微尺度质谱分析 Linfeng Xu、Xiangpeng Li、Wenzong Li、Kai-chun Chang、Hyunjun Yang、Nannan Tao、Pengfei Zhang、Emory Payne、Cyrus Modavi、Jacqueline Humphries、Chia-Wei Lu 和 Adam R. Abate* L. Xu 博士、X. Li 博士、K. Chang 博士、C. Modavi 博士、P. Zhang 博士、AR Abate 教授 加利福尼亚大学旧金山分校生物工程和治疗科学系,美国加利福尼亚州旧金山 94158 电子邮件:adam@abatelab.org N. Tao 博士 Bruker Nano Surfaces,美国加利福尼亚州圣何塞 95134 H. Yang 博士 神经退行性疾病研究所,加利福尼亚大学威尔神经科学研究所,美国加利福尼亚州旧金山 94158 W. Li 博士、J. Humphries 博士、C. Lu、 Amyris Inc. 5885 Hollis St #100, Emeryville, CA, 94608 USA E. Payne 密歇根大学化学系,美国密歇根州安娜堡 48104 AR Abate Chan 教授 Zuckerberg Biohub,美国加利福尼亚州旧金山 94158 关键词:微碗、微孔阵列、质谱成像 摘要:图案化表面可通过分离和浓缩分析物来提高激光解吸电离质谱的灵敏度,但其制造可能具有挑战性。在这里,我们描述了一种简单的方法来制造带有微米级孔图案的基底,与平面相比,它可以产生更准确、更灵敏的质谱测量结果。这些孔还可以浓缩和定位细胞和珠子以进行基于细胞的分析。 1. 引言基质辅助激光解吸电离(MALDI)是一种软电离质谱(MS)技术,常用于蛋白质组学和代谢组学的生物学研究[1–
矩阵辅助激光解吸电离(MALDI)是一种在蛋白质组学和代谢组学生物学研究中常用的软电离质谱(MS)的一种形式[1-3]。在没有自动进料器的情况下并行快速处理多个样本的能力使其适合于高通量和单细胞应用[4-6]。该方法的关键是使用激光器中的能量促进离子物种产生的矩阵或工程底物[7,8]。底物的特性,包括其化学,电导率和微图像冲击样品电离效率,从而使测量敏感性[8-11]。例如,微米级井可用于隔离不同组成样品,因此可以分别分析它们[12-14]。井阵列也与活动[15,16]或被动加载技术[12,17]兼容,以简化样品的准备。但是,MALDI-MS需要在分析之前将样品干燥。当液滴在平坦的表面上干燥时,由于咖啡环效应,它们倾向于分配有关周长的分析物[18,19]。类似的过程发生在圆柱井中,导致沿周围的降水[20,21],在该井中,由于壁被激光闭塞而抑制信号。两种情况下的结果均降低了灵敏度和由于样本斑点不均匀性而引起的测量变异性增加[18,22]。