摘要:理论基础:静息状态范式经常应用于脑电图 (EEG) 研究;然而,它与无法控制参与者的思想有关。为了量化受试者在休息时的主观体验,引入了阿姆斯特丹静息状态问卷 (ARSQ),涵盖了十个思维游离维度。我们旨在估计主观体验与 EEG 的静息状态微状态之间的关联。方法:使用 197 名受试者的 5 分钟静息状态 EEG 数据来评估七个微状态类别的时间特性。采用贝叶斯相关方法来评估静息后评估的 ARSQ 域与微状态参数之间的关联。结果:揭示了舒适度、自我和躯体意识域与神经电微状态的时间特性之间的几种关联。舒适度与微状态 E 持续时间之间的正相关性显示出最强的证据 (BF 10 > 10);其余相关性显示出大量证据 (10 > BF 10 > 3)。结论:我们的研究表明,评估静息状态下发生的自发思维对于理解微状态所反映的内在大脑活动具有重要意义。
摘要:电动图像(MI)脑电图(EEG)自然而舒适,并且已成为大脑 - 计算机界面(BCI)领域的研究热点。探索主体间MI-BCI性能变化是MI-BCI应用中的基本问题之一。EEG微晶格可以代表大脑认知功能。在本文中,使用了四个EEG微骨(MS1,MS2,MS3,MS4)进行分析,分析受试者的Mi-BCI性能差异,并计算四个微杆菌特征参数(平均持续时间,每秒出现,时间覆盖率和时间覆盖率和过渡概率)。测量了静息状态EEG Microstate特征参数与受试者的MI-BCI性能之间的相关性。基于MS1的发生的负相关性和MS3平均持续时间的正相关性,提出了静静态微晶格预测指标。28名受试者参加我们的MI实验,以评估我们静止状态的Microstate预测指标的性能。实验结果表明,与频谱熵预测变量相比,我们静止状态的Mi-Crostate预测器的平均面积(AUC)值为0.83,增加了17.9%,表明微骨特征参数可以更好地表明受试者的MI-BCI性能比光谱enterpy enterpropy预测器。此外,在单节水平和平均水平上,Microstate预测指标的AUC高于光谱熵预测变量的AUC。总体而言,我们的静止状态微晶格预测指标可以帮助MI-BCI研究人员更好地选择受试者,节省时间并促进MI-BCI的发展。
图 4 EEG 和伪影:(a) 参考点的变化降低了频谱中的飞机结构振动模式,如飞行前和飞行时 Cz 电极中的原始信号所示。(b) 和 (c) 中显示了 ICA 表征的一些说明性伪影。我们选择了相应 IC 活动的 1 分钟特征段。数据被分段以方便可视化。发动机故障发生在第 30 段左右。(b) 显示与发动机相关的组件,其活动呈现周期性模式,当发动机关闭时停止。(c) 说明与参与者运动相关的组件,其特征是短暂的峰值
图 4 EEG 和伪影:(a) 参考点的变化降低了频谱中的飞机结构振动模式,如飞行前和飞行时 Cz 电极中的原始信号所示。(b) 和 (c) 中显示了 ICA 表征的一些说明性伪影。我们选择了相应 IC 活动的 1 分钟特征段。数据被分段以方便可视化。发动机故障发生在第 30 段左右。(b) 显示与发动机相关的组件,其活动呈现周期性模式,当发动机关闭时停止。(c) 说明与参与者运动相关的组件,其特征是短暂的峰值