摘要:电动图像(MI)脑电图(EEG)自然而舒适,并且已成为大脑 - 计算机界面(BCI)领域的研究热点。探索主体间MI-BCI性能变化是MI-BCI应用中的基本问题之一。EEG微晶格可以代表大脑认知功能。在本文中,使用了四个EEG微骨(MS1,MS2,MS3,MS4)进行分析,分析受试者的Mi-BCI性能差异,并计算四个微杆菌特征参数(平均持续时间,每秒出现,时间覆盖率和时间覆盖率和过渡概率)。测量了静息状态EEG Microstate特征参数与受试者的MI-BCI性能之间的相关性。基于MS1的发生的负相关性和MS3平均持续时间的正相关性,提出了静静态微晶格预测指标。28名受试者参加我们的MI实验,以评估我们静止状态的Microstate预测指标的性能。实验结果表明,与频谱熵预测变量相比,我们静止状态的Mi-Crostate预测器的平均面积(AUC)值为0.83,增加了17.9%,表明微骨特征参数可以更好地表明受试者的MI-BCI性能比光谱enterpy enterpropy预测器。此外,在单节水平和平均水平上,Microstate预测指标的AUC高于光谱熵预测变量的AUC。总体而言,我们的静止状态微晶格预测指标可以帮助MI-BCI研究人员更好地选择受试者,节省时间并促进MI-BCI的发展。
主要关键词