摘要 — 脑机接口 (BCI) 是用户和系统之间强大的通信工具,它增强了人脑直接与环境通信和交互的能力。过去几十年来,神经科学和计算机科学的进步推动了 BCI 的令人振奋的发展,从而使 BCI 成为计算神经科学和智能领域的顶级跨学科研究领域。可穿戴传感设备、实时数据流、机器学习和深度学习方法等最新技术进步增加了人们对基于脑电图 (EEG) 的 BCI 在转化和医疗保健应用方面的兴趣。许多人受益于基于 EEG 的 BCI,它有助于在工作场所或家中单调的任务下持续监测认知状态的波动。在本研究中,我们调查了脑电信号传感技术和 BCI 应用中计算智能方法的最新文献,弥补了过去五年 (2015-2019) 系统总结中的空白。具体来说,我们首先回顾了 BCI 的现状及其重大障碍。然后,我们分别介绍了用于收集和清理 EEG 信号的先进信号传感和增强技术。此外,我们展示了最先进的计算智能技术,包括可解释的模糊模型、迁移学习、深度学习和组合,以在流行的应用中监控、维护或跟踪人类的认知状态和操作性能。最后,我们提供了几个受 BCI 启发的创新医疗保健应用,并讨论了基于 EEG 的 BCI 的一些未来研究方向。
主要关键词