本文将基于 PSO 的 PI 控制应用于 APF 拓扑的系统切换功能。使用粒子群优化 (PSO) 方法对有源电力滤波器 (APF) 的比例和积分 (PI) 增益进行调整,以进行无功功率补偿和谐波抑制。传统的 PI 控制器需要更多的计算时间并且精度较低。使用瞬时有功和无功功率方案提取谐波负载电流。将使用 PSO 训练的 PI 控制器与传统 PI 控制器的性能指标(包括总谐波失真、无功功率、功率因数和电容器电压调节)进行了比较。PSO 具有快速收敛、最少的调整参数和快速执行来解决非线性问题的特点。传统的 PI 控制器被在线 PSO 训练的 PI 控制器所取代,目的是在非线性负载条件下增强 APF 中的直流电压跟踪。所提出的工作是在 sim-power system 工具箱中开发的,该工具箱是 Matlab/Simulink 中的一个软件包。
模块 M0523:商业与管理 模块 M0524:硕士非技术课程 模块 M0913:CMOS 纳米电子学与实践 模块 M1048:电子设备与电路 模块 M0746:微系统工程 模块 M0768:微系统技术的理论与实践 模块 M1137:IMPMM 技术选修补充课程 - 现场 ET(根据特定学科规定) 模块 M0930:半导体研讨会 模块 M0747:微系统设计 模块 M0919:实验室:模拟和数字电路设计 模块 M0678:研讨会通信工程 模块 M0918:IC 设计基础 模块 M1130:项目工作 IMPMM 模块 M1589:实验室:模拟电路设计 模块 M0678:研讨会通信工程 模块 M1131:IMPMM 技术选修补充课程 - 领域 TUHH(根据特定学科规定) 专业化通信与信号处理
随着网络物理系统(CPS)的越来越连接的性质,新的攻击矢量以前在设计过程中未考虑。特别是,自动驾驶汽车是最有风险的CPS应用程序之一,包括大量旧软件,未经信任的第三方应用程序和远程通信接口等挑战。随着零日漏洞的不断发现,攻击者可以利用这种漏洞注入恶意代码,甚至利用现有的合法代码来接管CPS的网络部分。由于CP的紧密耦合性质,这可能导致以不良或毁灭性的方式改变身体行为。因此,反应强化系统不再有效,但是必须采取更积极的方法。移动目标防御(MTD)技术,例如指令集随机化(ISR)和地址空间随机 - ization(ASR),已证明对代码注入和代码重复使用攻击有效。但是,这些MTD技术可能导致控制系统崩溃,这在CPS应用中是无法接受的,因为这种崩溃可能会导致灾难性后果。因此,对于控制网络攻击时,通过控制重新构造以维持系统的可用性,MTD技术至关重要。本文通过集成移动目标防御技术,检测和恢复机制来确保安全,可靠和可预测的系统操作,解决了在攻击中维护CPS的系统和安全性的问题。特别是,我们考虑了对代码注入以及代码重复使用攻击的问题,并重新进行了足够快的速度,以确保维持自动驾驶汽车控制器的安全性和稳定性。通过使用MTD,例如ISR和ASR,我们的方法提供了防止攻击者获得执行代码注入和代码重复使用攻击所需的侦察知识的优势,确保攻击者无法在第一个地方找到脆弱性。我们的系统实现包括利用AES 256 ISR和核糖粒的运行时MTD的组合,以及利用攻击检测和重新配置功能的控制管理。我们利用自动驾驶汽车案例研究中开发的安全体系结构,利用定制的开发硬件在环测试台上。
图 7. 用于横向原子力显微镜 (AFM) 测量的集成尖端的静电硅致动器的 SEM 细节图(根据 [3])。 微结构和微元件:不是传感器或致动器的微型部件。例如:微透镜、镜子、喷嘴和梁;这些部件必须与其他元件组合才能提供有用的功能。 微系统和微仪器:将上述几种元件与适当的电子封装集成到微型系统或仪器中。它们往往非常特定于应用。例如:微型激光器、微型光谱仪、光学化学分析仪。制造这类系统的经济性往往使商业化变得困难。 微系统的工业应用:薄膜磁头、光盘、汽车部件、喷墨打印头、医疗应用、化学和环境应用。 4. 喷墨打印头 • 目前是微系统技术最大的应用之一。 • 一台典型的喷墨打印机每年要用掉好几个墨盒。 • 当今的喷墨打印机的分辨率为每英寸 1200 点 (dpi)。
在图 4 中,顶部面板标记为“机械位置”,表示目标齿轮的机械特征和设备方向。底部面板标记为“输出选项 # 1”(-S 变体),显示正向旋转齿轮(齿轮齿从引脚 4 侧传递到引脚 1 侧,图 3)的通道 A 和 B 数字 SPEED 输出信号对应的方波。最终结果是,当齿的前缘(传感器检测到的上升机械边缘)经过传感器表面时,传感器输出从高状态切换到低状态。如果旋转方向反转,使齿轮从引脚 1 侧旋转到引脚 4 侧(图 3),则输出极性反转(即,当检测到上升沿时输出信号变为高,并且齿是离传感器最近的特征)。
1 典型值为 T A = 25°C 和 V CC = 12 V。在规定的最大和最小限度内,单个单元的性能可能有所不同。2 必须根据功耗和结温调整最大电压;请参阅功率降额部分。3 负电流定义为从指定设备端子流出(源自)的常规电流。4 超过钳位电压的持续电压可能会对 IC 造成永久性损坏。5 脉冲持续时间在 V PULLUP / 2 的阈值处测量。6 工作频率(反向旋转)和工作频率(无方向脉冲)的最大值由输出脉冲的令人满意的分离决定:V OUT(HIGH) 为 t w(FWD)(最小值)。如果客户能够解决较短的高状态持续时间,则最大 f FWD 、f REV 和 f ND 可能会增加。7 如果在信号变化事件期间或之后未保持最小信号相位分离,则输出可能会消隐或出现无方向脉冲。通电期间的信号变化事件可能会增加获得正确方向脉冲所需的边沿数量。8 通电频率 ≤ 200 Hz。更高的通电频率可能需要更多的输入磁循环,直到实现定向输出脉冲。
摘要:“量子材料”是指其性质“无法用半经典粒子和低级量子力学来描述”的材料,即晶格、电荷、自旋和轨道自由度紧密交织在一起的材料。尽管它们具有有趣而奇特的特性,但总体而言,它们似乎远离微系统的世界,即微纳集成设备,包括电子、光学、机械和生物组件。关于铁性材料,即具有铁磁和/或铁电序的功能材料,可能与其他自由度(如晶格变形和原子畸变)耦合,我们在这里讨论一个基本问题:“我们如何弥合专注于量子材料和微系统的基础学术研究之间的差距?”本文从半导体的成功故事出发,旨在设计一个路线图,以开发基于铁性量子材料的非常规计算的新技术平台。通过描述 GeTe 这一典型案例(新一类材料(铁电 Rashba 半导体)的父化合物),我们概述了如何通过从微观建模到设备应用的研究渠道,实现学术部门与工业部门之间的有效整合,将好奇心驱动的发现提升到 CMOS 兼容技术的水平。
课程工作人员课程协调员:Aron Michael博士(G17 RM 316),A.Michael@unsw.edu.au咨询:鼓励您在课程材料,在一开始在线讲座期间和之后的课程材料,而不是通过电子邮件提出问题。讲师咨询时间将在讲座期间提供建议。欢迎您通过电子邮件发送讲师安排咨询时间。所有电子邮件查询都应在主题行中的ELEC9703与您的学生电子邮件地址进行,否则将不会回答。保持知情:可以在上课期间,通过电子邮件(您的学生电子邮件地址)和/或通过在线学习和教学平台发表公告 - 在本课程中,我们将使用Moodle https://moodle.telt.unsw.edu.au/login/login/login/login/index.php和Microsoft Teams Class Cls-elec-elec970333_7234。您已被添加到Microsoft Teams课程中,您将获得在线课程时间表的日历邀请。请注意,您将被视为已收到此信息,因此您应该仔细注意所有公告。本课程的Moodle名称是ELEC9703微系统设计和Techno-2021 T1。
核心资格 选修必修 专业选修必修 重点选修必修 跨学科补充 样本课程计划 O 硕士微电子与微系统 (IMPMM) 微电子专业补充 LP