肿瘤抑制和致癌信号通路之间的整合控制着癌细胞的各种细胞活动,包括细胞生长和凋亡。致癌基因的激活促进了癌症进展和逃逸机制,而肿瘤抑制因子则调节和抵消了致癌信号的负面影响。值得注意的是,磷酸酶和张力蛋白同源物 (PTEN) 是肿瘤抑制基因的重要家族成员之一,在调节肿瘤细胞的活动中起着关键作用。因此,PTEN 的受损、突变或缺失与癌症患者的低存活率或高肿瘤复发率有关。重要的是,G 蛋白偶联血小板活化因子受体 (PAFR) 的肿瘤高表达与肿瘤进展增加以及非小细胞肺癌 (NSCLC) 等恶性肿瘤的总体存活率下降和预后不良有关。类似地,在各种人类恶性肿瘤中检测到表皮生长因子受体 (EGFR) 信号的过度激活或突变,并且与预后不良有关。当前小型评论的目标是强调 PTEN 和 PAFR 以及 PAFR 和 EGFR 通路之间的机制见解在影响实验模型系统中的癌症生长和/或治疗剂的功效方面的重要性。
这篇小型评论探讨了大型藻类基因组编辑的现状和挑战。尽管这类生物具有生态和经济意义,但基因组编辑的应用有限。虽然 CRISPR 功能已在两种褐藻(Ectocarpus species 7 和 Saccharina japonica)和一种绿藻(Ulva prolifera)中得到证实,但这些研究仅限于概念验证演示。由于编辑效率相对较低,所有研究还(共同)以腺嘌呤磷酸核糖基转移酶为目标来富集突变体。为了推动该领域的发展,应该注重推进辅助技术,特别是稳定转化,以便可以筛选出具有效率的新型编辑试剂。还需要开展更多工作来了解这些生物中的 DNA 修复,因为这与编辑结果紧密相关。为大型藻类开发高效的基因组编辑工具将解锁表征其基因的能力,这在很大程度上是未知领域。此外,鉴于其经济重要性,基因组编辑还将影响育种活动,以开发产量更高、生产更多商业价值化合物并表现出更强的抵御全球变化影响能力的菌株。
“扩展的定量尿培养(Equc)”是一种用于检测尿液样本中可行微生物的增强培养方案。使用大量的尿液和不同的文化条件,等号能够发现广泛的细菌和真菌(酵母),这些细菌和真菌(酵母)否则未被标准的尿培养所发现。除了常见的尿道病原体外,已经证明等于检测新兴的病原体和新的病原体和共生微生物群。尽管尚未完全确定临床设置中等号方案的有用性,但最近的研究表明,计算可以提供有关症状缓解,治疗反应,治疗反应和主要尿液疾病的诊断的有价值信息,包括尿路感染,尿液失效,尿液失效和其他尿路症状。等价也可能有助于评估有益的微生物群作为生物治疗剂的实用性。这种叙述性缩影介绍了有关等于尿液微生物组和尿道病在健康和疾病中作用的临床实用性的当前研究发现。用英语编写的文献可在“ PubMed”上获得,并包含任何术语:“扩展的定量尿文化”,“增强的定量尿文化”和摘要中的“等价”用作源文章,以准备此Minireview。
油菜籽不仅可以提供大量具有高营养价值的食用油,还可以用作许多行业生产生物燃料的原料。因此,为了满足人类和工业的需求,迫切需要进行基因改变。尽管杂交和诱变等传统育种技术长期以来仍然是培育油菜良种的主要方法,但成簇的规律间隔短回文重复序列 (CRISPR) 正在成为最有价值的基因编辑技术之一,它可以实现精确的基因组工程,并为植物功能基因组学的研究开辟新的途径。虽然 CRISPR 已用于许多其他作物的遗传改良,但它有望成为油菜籽油改良的基因组编辑和分子设计的有效工具。这篇小型评论将讨论和总结过去和正在进行的使用 CRISPR 技术在油菜籽油改良和脂肪酸组成方面的研究和开发。此外,本文还将简要总结阻碍该工具效率的因素以及如何消除这些因素。本文还将考虑改进 CRISPR 技术以在油菜中获得更好的结果。这篇小综述将为使用 CRISPR 技术进行油菜油改良研究和遗传改良的研究人员打开新的窗口。
摘要:在过去的十年中,基于机器人的方法一直是微创手术中最重要的进步。机器人心脏手术是基于机器人的心脏手术总体病例的一半。自1998年以来,它已成为一种革命性的冠状动脉手术方法。然而,尽管它有希望的开始,但人们对在心脏手术(例如泌尿外科和普通外科手术)以外的其他手术领域的应用越来越感兴趣。在各种热情浪潮中,单个先驱者或有远见的心脏外科医生试图将机器人手术扩展到不同的心脏手术,但他们仍然在努力将其作为常规方法进行练习。在过去的20年中,机器人平台在微创心脏手术中具有重视,并具有可靠的安全性和功效。然而,尽管具有可行性,安全性和功效,但使用机器人辅助设置执行了不到0.5%–1.0%的冠状动脉搭桥术。我们认为,在心脏外科手术中,开放新的外科手术策略的时机已经越来越多地致力于机器人技术,混合动力和增强现实的援助。考虑到这一点,我们希望提出有关冠状动脉机器人手术的最新情况,有希望的结果及其可能的未来观点,重点是最新成就。实际上,根据文献数据,我们有信心机器人心脏手术正在迅速发展,如果我们投资培训和技术,新一代心脏外科医生必须面对美好的未来。因此,这种叙述性的Minireview介绍了与这种技术相关的经验和所有方面,并特别注意机器人的冠状动脉血运重建,对麻醉学以及外科手术方面,学习曲线,患者结果以及相关成本,并希望扩大了Cardiac Cardiac Spairemen of Cardiac Spaimers of Cardiac Spairemen的竞争。
摘要:从几十年的广泛研究,与神经炎症有关的关键遗传元素和生化机制中出现了,已被描述,这极大地有助于我们对神经退行性疾病(NDDS)的理解。在这个MinireView中,我们主要从过去三年开始讨论数据,强调了与神经炎症有关的两种主要细胞类型的关键作用和机制。审查还强调了早期发作,神经炎症的关键影响及其在NDDS发病机理中的动态相互作用的扩展过程。面对这些复杂的挑战,我们引入了支持使用间充质干细胞的无细胞治疗的引人注目的证据。这种治疗策略包括对小胶质细胞和星形胶质细胞的调节,周围神经细胞炎症的调节以及针对专门为NDD设计的靶向抗炎干预措施,同时还讨论了工程和安全考虑。这种创新的治疗方法精巧地调节了周围和神经系统的免疫系统,重点是实现出色的穿透力和靶向递送。这篇评论提供的见解对更好地理解和管理神经炎症具有重大影响。关键词:神经退行性疾病,神经炎症,间充质干细胞,外泌体神经退行性疾病(NDDS)在全球范围内变得越来越普遍。在大脑衰老的各种标志中,神经炎症引起了极大的关注[1]。这些疾病代表了主要与年龄相关并逐渐损害神经元功能的异质性神经系统疾病。虽然这些疾病可以在中枢神经系统(CNS)或周围神经系统(PNS)中表现出来,但新兴研究表明,PNS的病理学可能在CNS参与之前几年之前,可能最终导致老年人的神经退行性疾病。
从 Jinek 等人(2012、2013)和 Qi 等人(2013)的工作开始,原核生物用于防御外源病毒的自适应系统——成簇的规律间隔回文重复序列 (CRISPR) 与 CRISPR 相关核酸内切酶 9 (Cas9) 配对,越来越多地被认可为一种强大而有效的基因组编辑工具。RNA 引导的 CRISPR/Cas9 由一条小的引导 RNA (sgRNA) 与 Cas9 复合而成,它与目标 DNA 配对会诱导单个 Cas9 依赖的双链断裂 (DSB)(由 Lino 等人,2018 年综述)。由此产生的编辑包括在活细胞基因组的特定目标区域删除或插入特定序列,或改变预先存在的 DNA 序列(图 1)。近期,该技术已得到丰富,可用于标记 DNA 区域(Banito 等人,2018 年)、调节内源基因表达(La Russa 和 Qi,2015 年)或改变表观遗传状态(Vojta 等人,2016 年)。与转录激活因子样效应核酸酶 (TALEN) 和锌指核酸酶 (ZFN) 技术相比,CRISPR/Cas9 允许进行多重分析,构建速度快且更易于递送,编辑效率更高,即使脱靶切割更频繁(Gupta 和 Musunuru,2014 年)。在过去十年中,这种方法已经进入了癌细胞存活、转移和耐药性的基础和临床前肿瘤学研究领域。在这篇小型评论中,我们将概述 CRISPR/Cas9 技术,特别关注其在揭示致瘤机制和确定一组易位阳性儿童软组织肉瘤 (STS) 中可能针对的途径中的应用。
迄今为止,文献中描述了多种类型的癌症,许多相关治疗方法也在不断发展。在许多形式的癌症中,观察到脂质代谢(Fritz 等人,2013 年)和甲羟戊酸途径 (MVP) 的失调(Freed-Pastor 等人,2012 年)。胆固醇是细胞膜不可或缺的组成部分,它是胆汁酸、脂蛋白和类固醇激素的前体。它的生物合成受 MVP 控制,而 MVP 控制蛋白质法呢基化和香叶基化。这些翻译后修饰对于 Ras、Rho 或 Rac 蛋白的下游信号传导活性至关重要,这些蛋白属于小 GTPases 超家族 ( Takai 等人,2001 ),参与肿瘤发生、进展 ( Buhaescu 和 Izzedine,2007 )、增殖、迁移和肿瘤细胞存活 ( Kidera 等人,2010 )。与健康细胞一样,癌细胞也会酯化磷脂中的脂肪酸,而磷脂是细胞膜必需成分。这些必需的脂质是通过源自 MVP 的内源性代谢物获得的 ( Notarnicola 等人,2014 )。抑制这一重要过程可能对癌细胞有益,因为它们通常快速增殖,而不会影响太多繁殖速度较慢的健康细胞。他汀类药物能够通过抑制 HMG-CoA 还原酶 (HMGCR) 来降低血浆中的脂质水平。多项研究表明,他汀类药物的使用与癌症之间存在密切的相关性。第一项有希望的研究表明,他汀类药物能够改善癌症的预后,即延长生存时间(Gupta 等人,2019 年)。在这篇小型评论中,我们想阐明关于单独或与其他药物联合使用他汀类药物(如辛伐他汀、氟伐他汀和洛伐他汀)治疗癌症的新观点和创新目标。
1。Samuni Y,Goldstein S,Dean OM,BerkM。N-乙酰半胱氨酸的化学和生物活性。Biochim Biophys Acta -Gen subj。2013; 1830(8):4117-4129。 doi:10.1016/j.bbagen.2013.04.016 2。 pei Y,Liu H,Yang Y等。 N-乙酰半胱氨酸的生物学活动和潜在的口服应用:进步和前景。 氧化药物细胞寿命。 2018; 2018。 doi:10.1155/2018/2835787 3。 šalamonš,Kramar B,Marolt TP,PoljšakB,Milisav I. N-乙酰半胱氨酸的医学和饮食用途。 抗氧化剂。 2019; 8(5):1-16。 doi:10.3390/antiox8050111 4。 Tardiolo G,Bramanti P,MazzonE。概述N-乙酰半胱氨酸在神经退行性疾病中的影响。 分子。 2018; 23(12)。 doi:10.3390/Molecules23123305 5。 Dodd S,Dean O,Copolov DL,Malhi GS,Berk M.抗氧化剂治疗的N-乙酰半胱氨酸:药理学和临床实用程序。 专家意见Biol Ther。 2008; 8(12):1955-1962。 6。 Elbini Dhouib I,Jallouli M,Annabi A,Gharbi N,Elfazaa S,Lasram MM。 N-乙酰半胱氨酸的微型景观:一种具有新方法的旧药物。 生命科学。 2016; 151:359-363。 doi:10.1016/j.lfs.2016.03.003 7。 Emel Pamuk G,SonsuzA。在治疗非酒精性脂肪性肝炎的治疗中N-乙酰半胱氨酸。 J胃肠肝素。 2003; 18(10):1220-1221。 8。 Baniasadi S,Eftekhari P,Tabarsi P等。 N-乙酰半胱氨酸对抗结核药物诱导的肝毒性的保护作用。 EUR J GASTROENTEROL HEPATOL。2013; 1830(8):4117-4129。 doi:10.1016/j.bbagen.2013.04.016 2。pei Y,Liu H,Yang Y等。N-乙酰半胱氨酸的生物学活动和潜在的口服应用:进步和前景。氧化药物细胞寿命。2018; 2018。 doi:10.1155/2018/2835787 3。šalamonš,Kramar B,Marolt TP,PoljšakB,Milisav I.N-乙酰半胱氨酸的医学和饮食用途。抗氧化剂。2019; 8(5):1-16。 doi:10.3390/antiox8050111 4。 Tardiolo G,Bramanti P,MazzonE。概述N-乙酰半胱氨酸在神经退行性疾病中的影响。 分子。 2018; 23(12)。 doi:10.3390/Molecules23123305 5。 Dodd S,Dean O,Copolov DL,Malhi GS,Berk M.抗氧化剂治疗的N-乙酰半胱氨酸:药理学和临床实用程序。 专家意见Biol Ther。 2008; 8(12):1955-1962。 6。 Elbini Dhouib I,Jallouli M,Annabi A,Gharbi N,Elfazaa S,Lasram MM。 N-乙酰半胱氨酸的微型景观:一种具有新方法的旧药物。 生命科学。 2016; 151:359-363。 doi:10.1016/j.lfs.2016.03.003 7。 Emel Pamuk G,SonsuzA。在治疗非酒精性脂肪性肝炎的治疗中N-乙酰半胱氨酸。 J胃肠肝素。 2003; 18(10):1220-1221。 8。 Baniasadi S,Eftekhari P,Tabarsi P等。 N-乙酰半胱氨酸对抗结核药物诱导的肝毒性的保护作用。 EUR J GASTROENTEROL HEPATOL。2019; 8(5):1-16。 doi:10.3390/antiox8050111 4。Tardiolo G,Bramanti P,MazzonE。概述N-乙酰半胱氨酸在神经退行性疾病中的影响。分子。2018; 23(12)。 doi:10.3390/Molecules23123305 5。 Dodd S,Dean O,Copolov DL,Malhi GS,Berk M.抗氧化剂治疗的N-乙酰半胱氨酸:药理学和临床实用程序。 专家意见Biol Ther。 2008; 8(12):1955-1962。 6。 Elbini Dhouib I,Jallouli M,Annabi A,Gharbi N,Elfazaa S,Lasram MM。 N-乙酰半胱氨酸的微型景观:一种具有新方法的旧药物。 生命科学。 2016; 151:359-363。 doi:10.1016/j.lfs.2016.03.003 7。 Emel Pamuk G,SonsuzA。在治疗非酒精性脂肪性肝炎的治疗中N-乙酰半胱氨酸。 J胃肠肝素。 2003; 18(10):1220-1221。 8。 Baniasadi S,Eftekhari P,Tabarsi P等。 N-乙酰半胱氨酸对抗结核药物诱导的肝毒性的保护作用。 EUR J GASTROENTEROL HEPATOL。2018; 23(12)。doi:10.3390/Molecules23123305 5。Dodd S,Dean O,Copolov DL,Malhi GS,Berk M.抗氧化剂治疗的N-乙酰半胱氨酸:药理学和临床实用程序。专家意见Biol Ther。2008; 8(12):1955-1962。 6。 Elbini Dhouib I,Jallouli M,Annabi A,Gharbi N,Elfazaa S,Lasram MM。 N-乙酰半胱氨酸的微型景观:一种具有新方法的旧药物。 生命科学。 2016; 151:359-363。 doi:10.1016/j.lfs.2016.03.003 7。 Emel Pamuk G,SonsuzA。在治疗非酒精性脂肪性肝炎的治疗中N-乙酰半胱氨酸。 J胃肠肝素。 2003; 18(10):1220-1221。 8。 Baniasadi S,Eftekhari P,Tabarsi P等。 N-乙酰半胱氨酸对抗结核药物诱导的肝毒性的保护作用。 EUR J GASTROENTEROL HEPATOL。2008; 8(12):1955-1962。6。Elbini Dhouib I,Jallouli M,Annabi A,Gharbi N,Elfazaa S,Lasram MM。N-乙酰半胱氨酸的微型景观:一种具有新方法的旧药物。生命科学。2016; 151:359-363。 doi:10.1016/j.lfs.2016.03.003 7。 Emel Pamuk G,SonsuzA。在治疗非酒精性脂肪性肝炎的治疗中N-乙酰半胱氨酸。 J胃肠肝素。 2003; 18(10):1220-1221。 8。 Baniasadi S,Eftekhari P,Tabarsi P等。 N-乙酰半胱氨酸对抗结核药物诱导的肝毒性的保护作用。 EUR J GASTROENTEROL HEPATOL。2016; 151:359-363。 doi:10.1016/j.lfs.2016.03.003 7。Emel Pamuk G,SonsuzA。在治疗非酒精性脂肪性肝炎的治疗中N-乙酰半胱氨酸。J胃肠肝素。2003; 18(10):1220-1221。 8。 Baniasadi S,Eftekhari P,Tabarsi P等。 N-乙酰半胱氨酸对抗结核药物诱导的肝毒性的保护作用。 EUR J GASTROENTEROL HEPATOL。2003; 18(10):1220-1221。8。Baniasadi S,Eftekhari P,Tabarsi P等。N-乙酰半胱氨酸对抗结核药物诱导的肝毒性的保护作用。 EUR J GASTROENTEROL HEPATOL。N-乙酰半胱氨酸对抗结核药物诱导的肝毒性的保护作用。EUR J GASTROENTEROL HEPATOL。2010; 22(10):1235-1238。 doi:10.1097/meg.0b013e32833aaa11b9。DeOliveira cpm de S,Cotrim HP,Stefano JT,Siqueira ACG,Salgado Ala,Ala,Parise ER。N-乙酰半胱氨酸和/或非酒精性脂肪性肝炎中与二甲双胍相关的ursexyoxycholic酸:开放标签的多中心随机对照试验。ARQ胃肠道。 2019; 56(2):184-190。 doi:10.1590/s0004-2803.201900000-36 10.Martina,V.,Masha,A.,Gigliardi,V.R.,Brocato,L.,Manzato,E. 糖尿病护理。 2008; 31(5):940-944。ARQ胃肠道。2019; 56(2):184-190。 doi:10.1590/s0004-2803.201900000-36 10.Martina,V.,Masha,A.,Gigliardi,V.R.,Brocato,L.,Manzato,E. 糖尿病护理。 2008; 31(5):940-944。2019; 56(2):184-190。 doi:10.1590/s0004-2803.201900000-36 10.Martina,V.,Masha,A.,Gigliardi,V.R.,Brocato,L.,Manzato,E.糖尿病护理。2008; 31(5):940-944。
在过去的几十年中,通常称为脂质筏的专业“膜微区”(MM)的概念广泛地影响了质膜的分子生物学。这些胆固醇/鞘脂富的结构域在调节细胞过程中起着至关重要的作用,包括细胞内信号传导,细胞死亡和氧化还原稳态(Simons and Toomre,2000; Mollinedo and Gajate,2015年)。在过去的几年中,MM参与了几种疾病的发病机理,从而导致创新的药理学方法的发展,并特别针对其成分,包括脂质和蛋白质。各种分子之间的特定相互作用使脂质筏具有物理和生化的某些特性。的确,筏假说的物理化学基础是通过对模型膜的几项研究得出的,其中脂质的混合物,类似于外质膜外膜的组成,在液体有序和无序领域中分离具有独特特征的液体(Brown and London,London,1998; Simons and Vaz,2004年)。使用人工膜揭示了不同药物对膜特性的影响,从而为基于膜生物物理特性的修改而建立了新的治疗策略的基础(Peetla等,2009; Knobloch等,2015,2015年)。汀类药物是这种创新方法如何与基于膜胆固醇消耗的经典策略联系起来的理想例子。因此,它们越来越多地用于增强化学治疗药物的递送和效率(Pinzon-Daza等,2012; Di Bello等,2020)。vona等。汀类药物是一类众所周知的降低胆固醇剂,具有多种多效性效应(即胆固醇无关),包括影响人工和生物膜组织的能力(Wang等,2008; Redondo-Morata et al。et al.,2016; galiuls eta; galiuls eta; Al。,2020)。在他的Minireview中,Preta总结了基于改变膜胆固醇/鞘脂含量的癌症治疗策略,以及改变癌症膜双层特性的癌症或厚度,其最终目的是提高对氧化毒性药物和多种抗抗性的敏感性。审查基于抑制其合成,对其摄取和细胞内运输的调节以及在治疗和/或预防某些类型的癌症治疗的可能性,提供有关胆固醇靶向策略的更新。但是,脂质筏的独家特性及其对细胞动力学的重要性,使它们容易受到病原体劫持的影响。的确,与宿主细胞相互作用的许多步骤依赖于宿主脂质筏,在某些情况下,这种相互作用导致微区域的修饰。在细菌感染期间,许多毒素与膜筏相互作用。Yeh等。 报告了弯曲杆菌的弯曲杆菌细胞蛋白静态毒素(CDT)的能力,以降低另外两种脂质筏结合细胞毒素的影响Yeh等。报告了弯曲杆菌的弯曲杆菌细胞蛋白静态毒素(CDT)的能力,以降低另外两种脂质筏结合细胞毒素的影响