这是一个关于数据的故事,它始于 2016 年夏天的叙利亚。我刚刚驾驶 F-16 完成了一场奇怪的长达七小时的战斗飞行,在叙利亚西北部城市曼比季上空提供近距离空中支援。我和我的僚机投下了我们所有的炸弹——其中大部分都在我们伙伴叙利亚民主力量的“危险近距离”范围内——而特种作战战斗控制员则通过卫星无线电描述了我们的目标。在城市地面战最激烈的部分,一架俄罗斯 SU-30 侧卫战斗机在我们的空战范围内飞行,打断了我们的行动。我让我的僚机负责近距离空中支援任务几分钟,同时我拦截了侧卫战斗机飞行员,以防止他干扰。这不是一次无聊的出击——我们驾驶着装载实弹的超音速战斗机,在最近将一名被俘的战斗机飞行员活活烧死在笼子里的坏人上方几英里处飞行,在城市战中投掷炸弹,拦截一架敌方战斗机,除非他采取敌对行动,否则我们无权击落他。在那个世界里,界限变得模糊。这似乎是不明智的
这是一个关于数据的故事,它始于 2016 年夏天的叙利亚。我刚刚驾驶 F-16 完成了一场奇怪的长达七小时的战斗飞行,在叙利亚西北部城市曼比季上空提供近距离空中支援。我和我的僚机投下了我们所有的炸弹——其中大部分都在我们伙伴叙利亚民主力量的“危险近距离”范围内——而特种作战战斗控制员则通过卫星无线电描述了我们的目标。在城市地面战最激烈的部分,一架俄罗斯 SU-30 侧卫战斗机在我们的空战范围内飞行,打断了我们的行动。我让我的僚机负责近距离空中支援任务几分钟,同时我拦截了侧卫战斗机飞行员,以防止他干扰。这不是一次无聊的出击——我们驾驶着装载实弹的超音速战斗机,在最近将一名被俘的战斗机飞行员活活烧死在笼子里的坏人上方几英里处飞行,在城市战中投掷炸弹,拦截一架敌方战斗机,除非他采取敌对行动,否则我们无权击落他。在那个世界里,界限变得模糊。这似乎是不明智的
2016 年夏天,我驾驶 F-16 战机在叙利亚西北部城市曼比季上空执行了一场奇怪的长达七小时的战斗任务,为该城市提供近距离空中支援。我的僚机和我投下了我们所有的炸弹,其中大部分都在我们的伙伴叙利亚民主力量的“危险近距离”范围内,而特种作战战斗控制员则通过卫星无线电描述了我们的目标。在城市地面战最激烈的部分,一架俄罗斯 SU-30 侧卫战机在我们的空战范围内飞行,打断了我们的行动。我让我的僚机负责近距离空中支援任务几分钟,同时我拦截了侧卫战机飞行员,以防止他干扰。这不是一次无聊的出击——我们驾驶着装载实弹的超音速战斗机,在最近将一名被俘的战斗机飞行员活活烧死在笼子里的坏人上方几英里处飞行,在城市战中投掷炸弹,拦截一架敌方战斗机,除非他实施敌对行为,否则我们无权击落他。在那个世界里,界限变得模糊。这似乎是不明智的
米切尔航空航天研究所是一家独立的、无党派的政策研究机构,旨在促进人们对利用空中、太空和网络空间领域的国家安全优势的理解。米切尔研究所的目标是:1) 向公众宣传航空航天力量在实现美国全球利益方面的优势;2) 向关键决策者介绍利用空中、太空和网络空间领域所产生的政策选择,以及保持美国作为世界领先航空航天国家地位的必要投资的重要性;3) 培养了解在空中、太空和网络空间开展行动优势的未来政策领导者。米切尔研究所坚持不在其研究和学习工作中提倡特定专有系统或特定公司的政策。
需要可离子化脂质 广义上讲,核糖核酸 (RNA) 疗法包括反义寡核苷酸 (ASO)、小干扰 RNA (siRNA)、微小 RNA (miRNA)、信使 RNA (mRNA) 和单向导 RNA (sgRNA) 介导的 CRISPR-Cas9 系统,它们可以通过不同的作用方式操纵基本上任何感兴趣的基因 1 。然而,RNA 疗法易受核酸酶影响,并且由于其体积大且带负电荷而无法渗透细胞。通过可临床转化的脂质纳米颗粒 (LNP) 将 RNA 递送至靶细胞为应对包括 COVID-19 在内的一系列危及生命的疾病提供了巨大的机会 2 。LNP 通常由四种成分组成——可离子化脂质、磷脂、胆固醇和聚乙二醇化脂质,其中可离子化脂质在保护 RNA 和促进其胞浆运输方面起主要作用。可离子化脂质在酸性 pH 下带正电荷以将 RNA 浓缩为 LNP,但在生理 pH 下呈中性以最大程度地降低毒性。它们可以在细胞摄取后在酸性内体中质子化,并与阴离子内体磷脂相互作用形成与双层膜不相容的锥形离子对(图 1)。这些阳离子-阴离子脂质对驱动从双层结构到倒六边形 H II 相的转变,从而促进膜融合/破裂、内体逃逸和货物释放到细胞溶胶 3 。自 2008 年以来,已经创建了具有多种化学特性的可离子化脂质。根据这些脂质的结构对其进行系统分类可以极大地有利于该领域并促进下一代可离子化脂质的开发。目前,有五种主要的可离子化脂质类型被广泛用于 RNA 递送(图 1)。
摘要 为了减少海上风电场的运营和维护 (O&M) 支出(其中 80% 的成本与部署人员有关),海上风电行业希望通过机器人和人工智能 (RAI) 的进步来寻求解决方案。由于在动态环境中处理已知和未知风险的复杂性,住宅超视距 (BVLOS) 自主服务的障碍包括运行时安全合规性、可靠性和弹性方面的运营挑战。在本文中,我们采用了共生系统方法 (SSOSA),该方法使用共生数字架构 (SDA) 来提供支持技术的网络物理编排。实施 SSOSA 可以实现合作、协作和确证 (C 3 ),以解决自主任务期间的安全性、可靠性和弹性的运行时验证。我们的 SDA 提供了一种同步机器人、环境和基础设施的分布式数字模型的方法。通过 SDA 的协调双向通信网络,远程操作员可以提高对任务概况的可见性和理解。我们在受限操作环境中的资产检查任务中评估了我们的 SSOSA。展示了我们的 SSOSA 克服安全性、可靠性和弹性挑战的能力。SDA 支持生命周期学习和共同进化,并在互连系统之间共享知识。我们的结果评估了可能危及自主任务的突发和渐进故障以及未知事件。使用分布式和协调决策,SSOSA 增强了对任务状态的分析,其中包括对驻留机器人内关键子系统的诊断。此次评估表明,SSOSA 为 BVLOS 自主任务提供了增强的运行时操作弹性和安全合规性。SSOSA 有可能成为一种高度可转移到其他任务场景和技术的方法,为实现可扩展的自主服务提供了途径。
虽然初始的TAIMET T细胞疗法的方法取决于稀有肿瘤 - 反应性T细胞的识别和扩展,但基因工程通过促进原代T细胞的修饰以提高其治疗潜力,从而改变了癌症的免疫疗法。特别是,基因编辑技术已被限制在产生T细胞群体,其对抗原的反应改善,精疲力尽的速率以及用于同种异体应用中的大量使用。在这篇综述中,我们提供了T细胞疗法基因编辑策略和用于基因工程T细胞的递送技术的概述。我们还讨论了最近利用基因编辑来增强T细胞的效率并扩大癌症免疫疗法的应用的近期研究和临床试验。©2021作者。由Elsevier B.V.这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
在美国海军学院及其163年的历史上,巴顿博士是仅有的三名非洲裔美国人之一,是终身终身教授的职级,也是第一个在工程和武器部门的里程碑。在2010年,他担任机械工程部门主席,负责其战略领导和计划其教职员工,中级学生团体,课程和资源。在担任主席期间,该部门恢复并认可了通用工程计划,并创建了核工程计划,这是该学院首次产品。Barton博士主持了I司最大的部门,由42名平民和军事教师组成,并在能源和推进,核能,结构和材料以及设计方面促进了充满活力的研究和学术环境。Barton博士主持了I司最大的部门,由42名平民和军事教师组成,并在能源和推进,核能,结构和材料以及设计方面促进了充满活力的研究和学术环境。