低维材料表现出奇特的物理特性。其中,过渡金属二硫属化物 (TMDs) 层状半导体材料,例如 MoS 2 、MoSe 2 、MoTe 2 、WS 2 、WSe 2 、WTe 2 和 PdSe 2,作为后硅时代的可能候选材料而备受关注 [1]。这些二维 TMD 纳米材料的单层 [2] 作为半导体,表现出高效的光吸收率,从而可制成高响应度的光电探测器 [3]。TMD 的主要技术特性以 MX2 形式呈现。其中,M 是由六边形排列的原子组成的薄片,堆叠在两层 X 原子之间。这些晶体的三层被弱范德华力夹住,导致块状晶体分离为单个二维薄片 [4]。相邻三层之间缺乏共价键,导致2D TMD 薄片中悬挂键短缺。
编号组件描述1保护导体连接PE低抗性防护接地和工业PC 2电源的功能接地(X101)连接电源和工业PC 3状态的电源和外部接线,用于UPS-OCT,Power,Power,Power,Power,Mose Storage设备,TWINCAT 4 ETRENENT INTERTIC (X106-109) Connection of peripheral devices 6 DisplayPorts (X110, X111) Transmission of the video signal 7 Side cover Access to battery and storage media 8 Name plate Information on the equipment of the industrial PC 9 Mounting plate Plate for mounting the industrial PC over the narrow sides in the control cabinet 10a PCIe module slot 1 Slot for Beckhoff PCIe compact modules 10b PCIe module slot 2 Slot for Beckhoff PCIe紧凑型模块
摘要 — 二维 (2D) 半导体晶体可用于进一步提高场效应晶体管的效率和速度。此类晶体管不受传统 MOS 晶体管在尺寸减小时产生的一些不利影响。本研究提出了以二维晶体为沟道的晶体管 MOS 结构模型,并研究了其电荷特性。在 MoSe 2 、WS 2 、WSe 2 、ZrSe 2 、HfSe 2 和 PtTe 2 等代表性二维晶体的电物理特性变化范围内对这些特性进行了数值模拟。发现了结构电物理参数通过化学势的自洽相关性,并证明了场电极电位和栅极绝缘体电容对它们的影响。对该晶体管结构的传输特性陡度与电压增益的计算表明,对于禁带宽度在0.25–2.1 eV范围内的过渡金属二硫属化合物(TMD)沟道,上述参数的幅度分别可达0.1 mA/V和1000。
光学材料的设计、合成和应用,专门研究多功能新型发光材料、二维材料和变色/光学可变颜料,用于防伪油墨配方,打击货币、护照和重要文件的伪造。 开发隐形墨水(在 365 nm 紫外线 LED 下可见的红色发光),用于防止重复投票。 开发用于高对比度荧光细胞成像以及用于药物输送应用的 MRI 高对比度成像的发光磁性材料。 开发与蓝色二极管激光器集成的黄色荧光粉,为汽车前照灯应用产生白光。 开发用于光学显示和储能应用的碳奇异材料(石墨烯、石墨烯量子点、碳纳米管和纳米纤维)。 设计自主开发的 CVD 装置,用于在 Si/SiO 2 基板上连续生长高度可重复的“MoS 2 /MoSe 2 /WSe 2 单层”沉积,用于计量、太赫兹和光电探测器设备。
垂直堆叠的范德华(VDW)异质结构具有独特的电子,光学和热特性,可以通过扭曲角工程来操纵。然而,双层界面处的弱语音耦合施加了基本的热瓶颈,以实现未来的二维设备。使用超快电子衍射,我们直接研究了照片诱导的MOS 2 /WS 2中的非平衡声子动力学,在4°扭曲角度和WSE 2 /Mose 2的旋转角度为7°,16°,16°和25°和25°。,我们确定了一个层间传热通道,其特征时间尺度为约20个皮秒,假设初始内部内部热化的分子动力学模拟比分子动力学模拟快约一个数量级。涉及声子散射的原子计算表明,此过程起源于初始层间电荷转移和散射之后的非热声子种群。我们的发现通过调整非平衡声子种群来提出VDW异质结构中热管理的途径。
对应物。[2]因此,2D材料非常适合柔性光电子,并且有可能用于下一代超薄电子和光电设备。[1]在2004年发现石墨烯时,首先实现了2D材料的概念。[4]石墨烯对其出色的电气,光学和机械性能引起了广泛的关注。[4-6]已经研究了各种技术应用,包括Spintronics,sensors,opetelectronics,SuperCapitors和Solar Cells等。[5,7] Besides graphene, other 2D materials, such as h-BN, phosphorene, silicene, germanene, and transition metal dichalcogenides (molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ), and tungsten diselenide (WSe 2 ), etc.),近年来已经进行了广泛的研究。[1,8–11]单层二维材料的厚度通常在订单上或小于1 nm。同时,它们的侧向尺寸可以达到更大的尺寸(从微米到偶数英寸),并且在随后的处理或进行特征或设备应用程序的后续处理或后续测量之前,可以将2D材料转移到不同的基板上。
阿波罗计划人员赢得了 12 月份的 Buc Trimmer 奖杯,这是他们在过去六个月内第三次获此殊荣。月度排行榜上的亚军分别是材料部、第二名和质量与可靠性保证部。进入前 10 名的依次是:Saturn S-11;行政部门;财务部;研究、工程和测试部;管理规划和控制部;合同和定价部以及制造和设施部。12 月份主要组织中的杰出贡献者有:行政部门的 Don Gallegos;阿波罗计划的 NR Anderson、RJ Harrington、WW Potter、WS Dwinell、LE Pumphrey、DT Haigh 和 JH Weismose;财务部的 LA Strelsky;管理规划和控制部的 FB Meek;里拉制造和设施部的 TJ Webb;材料部的 GH Peterson; LM Patrick,质量和可靠性保证;KL Blackmer 和 GC Frey,研究、工程和测试,以及
低阈值光学非线性的潜力在光子学和概念光学神经元网络领域引起了广泛关注。二维 (2D) 半导体中的激子在这方面尤其有前景,因为减少的屏蔽和维度限制会促进它们明显的多体相互作用以实现非线性。然而,对这些相互作用的实验测定仍然不明确,因为光泵浦通常会产生激子和未结合载流子的混合物,其中带隙重正化和载流子屏蔽对激子能量的影响相互抵消。通过比较单层 MoSe 2 光致发光光谱对激子基态和激发态能量的影响,我们能够分别识别中性激子和电荷载流子对库仑结合的屏蔽。当中性激子密度从 0 增加到 4 × 10 11 𝑐𝑚 −2 时,激子基态 ( A-1s ) 和激发态 ( A-2s ) 之间的能量差红移 5.5 meV,而电子或空穴密度增加时则发生蓝移。这种能量差变化归因于中性激子的库仑结合相互屏蔽,从中我们提取出激子极化率为 𝛼 2𝐷
扭曲的MoiréVander waals异质结构有望为强烈相关的材料提供强大的量子模拟平台,并实现实验室中拓扑状态等物质的难以捉摸的状态。我们证明了扭曲过渡金属二甲元基(TMD)异纳米骨的Moiré带表现出非平凡的拓扑顺序,这是由于k valleys中的价和传导带状态的趋势而形成巨大的带隙(当旋转式孔隙(SOC)时)形成巨型带隙(SOC)。在扭曲的WS 2 /MOS 2和WSE 2 /MOSE 2的特征中,我们发现与拓扑平面带相关的沉重费米子和存在强相关状态的存在,从而增强了异常的霍尔电导率(AHC)。通过频段分析,我们表明来自±K-Valleys的最高传导带非常平坦,并带有旋转/山谷Chern号。此外,我们证明了MoiréTMDHetero-Nanoribbons中的非线性异常大厅效应可用于操纵Terahertz(THZ)辐射。我们的发现建立了Vi tmd纳米容器的扭曲异质结构,作为工程拓扑山谷量子阶段和THZ非线性霍尔电导率的可调平台。