并去除mRNA甲基化[9]。作者促进了M 6 A甲基化,并包括M 6 A甲基甲基甲基甲基化,Mettl3,Mettl5,Mettl14和其他亚基。橡皮擦是脱甲基酶,包括烷基化修复同源蛋白5(ALKBH5)和FTO。读者重新获得M 6 a-甲基化转录本,包括YTHDF1,YTHDF2和YTHDF3。这些调节蛋白通常在人类癌症中失调,并通过调节下游靶标和信号来促进或抑制癌症发展时发挥重要的功能[10]。Accu Multing研究工作已经证实,M 6修改可以通过CIRCRNA调节癌症的发展。例如,M 6 A介导的电路MDK的过表达促进了肝素癌癌的细胞增殖和侵袭[11]。ALKBH5介导的m 6循环CCDC134的修饰通过增强HIF1A转录加速了宫颈中的转移[12]。尽管如此,M 6的功能A的EC修饰及其对CIRCRNA的潜在调节机制尚不清楚。
摘要在过去十年中肥胖的流行率一直在增加,这对体内几种代谢疾病产生了影响。为减少和克服诸如药理治疗之类的肥胖作用而做出了各种努力。此外,使用天然成分(例如益生菌)进行了优化,以最大程度地减少引起的影响。肠道微生物群的平衡在帮助改善肥胖症中的营养不良,炎症和脂肪肝脏方面具有重要作用。方法:本综述使用了收集和总结科学数据所必需的范围审查,并指导未来的调查,并规定文章直至最近10年(2014年),康普茶作为一种富含益生菌的饮料,可以作为肥胖管理的天然治疗。结果:总共收集了244篇文章,11篇文章符合纳入标准。结论:康普茶具有有益的作用,并有可能通过各种机制改善肥胖条件。关键字:康普茶;肥胖;益生菌引入了过去的半个世纪,肥胖的全球发病率已激发到流行性水平,并在全球范围内增加了健康问题(Mayoral等人,2020年)。在所有性别和所有年龄段,肥胖的发生率都显着增加,老年人和妇女的肥胖率较高(Lin&Li,2021)。肥胖症的患病率(BMI≥30kg/m²)估计在2025年增加到8.92亿人(世界肥胖联合会,2022年)。此外,肥胖的发生率会影响肠道中菌群组成的变化。Obesity can negatively affect almost all physiological functions of the body and is at risk for the development of various non-communicable diseases (Chooi et al., 2019), such as type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), metabolic syndrome (MetS), chronic kidney disease (CKD), hyperlipidemia, hypertension, nonalcoholic脂肪肝病(NAFLD),某些类型的癌症,阻塞性睡眠呼吸暂停,骨关节炎和抑郁症(Lin&Li,2021年)。此外,肥胖的临床并发症几乎会影响每个器官系统,肥胖对发病率,死亡率和医疗保健成本的影响很大(Hecker等,2022)。对288万肥胖个体的荟萃分析表明,肥胖使死亡率的风险高出1.18,高于非肥胖(Abdelaal等,2017)。肥胖是一种复杂的疾病,涉及多种分子机制,例如能量失衡,激素调节,慢性炎症,信号通路,自噬,胆汁盐水解酶,遗传学和神经系统(Wen等,2022)(Alruwaili等,20221)。肥胖个体在称为营养不良的细菌数量中遭受不平衡(Breton等,2022)。营养不良会导致良好细菌的降低,例如双歧杆菌,细菌,乳酸杆菌和
2个大型和小组会议的教程,学生将学习如何克隆基因,构建DNA库,表达和表征重组蛋白。使用计算机软件(例如折叠),学生将尝试设计(并发现)“较新”和“更好”蛋白质,以应对生物技术和医学科学领域的特定挑战和机遇。教程将补充案例示例,以使学生能够使用各种生物信息学资源来收集,处理,呈现和解释分子数据。
发现针对 SARS- CoV-2 3CL pro 蛋白靶点的新型羟乙胺类似物:分子对接、分子动力学模拟和构效关系研究 Sumit Kumar 1,2、Prem Prakash Sharma 2、Uma Shankar 3、Dhruv Kumar 4、Sanjeev K Joshi 5、Lindomar Pena 6、Ravi Durvasula 7、Amit Kumar 3、Prakasha Kempaiah 7、Poonam 1、和 Brijesh Rathi 2,* 1 德里大学米兰达楼化学系,德里 - 110007。 2 德里大学汉斯拉吉学院转化化学与药物研发实验室,德里 - 110007 印度 3 印度理工学院生物科学与生物医学工程系,印多尔,西姆罗尔,印多尔 - 453552,印度 4 阿米蒂大学北方邦阿米蒂分子医学与干细胞研究所 (AIMMSCR),Sec-125,诺伊达 - 201313,印度 5 国防研究与发展组织技术部,总部,Rajaji Marg,新德里 - 110011 6 奥斯瓦尔多·克鲁兹基金会 (Fiocruz) Aggeu Magalhaes 研究所 (IAM) 病毒学系,50670-420,累西腓,伯南布哥州,巴西。 7 洛约拉大学斯特里奇医学院医学系,2160 South First Avenue,芝加哥,伊利诺伊州 60153,美国
2 捷克布尔诺圣安妮大学医院国际临床研究中心,3 捷克布尔诺马萨里克大学医学院布尔诺大学医院病理学系,4 捷克布尔诺马萨里克大学医学院布尔诺大学医院儿科外科、骨科和创伤学系,5 捷克布尔诺马萨里克大学医学院布尔诺大学医院儿科放射学系,6 捷克布尔诺马萨里克大学医学院药理学系,7 捷克布尔诺马萨里克纪念癌症研究所应用分子肿瘤学区域中心,8 捷克布尔诺马萨里克大学中欧理工学院,9 捷克布尔诺马萨里克纪念癌症研究所肿瘤病理学系,10 马萨里克大学理学院实验生物学系肿瘤生物学实验室,捷克布尔诺,11 布拉格儿童白血病调查,捷克布拉格查理大学第二医学院儿科血液学和肿瘤学系,12 捷克布尔诺马萨里克大学医学院,13 捷克布尔诺心血管外科和移植中心,14 加拿大安大略省多伦多 CSTS 医疗保健中心
N-亚硝胺药物杂质是FDA关注的重点,尤其是由药物本身形成的亚硝胺杂质,称为N-亚硝胺药物相关杂质或NDSRI。杂质可以在药物生命周期的任何时间形成,例如作为合成副产物、在储存过程中以及在接受治疗的患者体内产生的NDSRI。使用突变试验可以识别可能增加癌症风险的N-亚硝胺杂质;具有致突变性的N-亚硝胺被认为是致癌物质,在药物中的含量被控制在非常低的水平。因此,FDA开发能够识别致突变N-亚硝胺的测试模型非常重要。DGMT科学家与药物评估和研究中心(CDER)亚硝胺药物杂质工作组合作,使用体外细菌和人类细胞突变试验评估一系列小分子N-亚硝胺和NDSRI的致突变性和遗传毒性。此外,还使用二维 (2D) 和三维 (3D) 人类肝细胞 (HepaRG) 模型测试了八种不同的 N-亚硝胺的遗传毒性。最后,对不同的 N-亚硝胺在转基因啮齿动物中的致癌性进行了评估。这些研究的目的是开发筛选和后续检测方法,以高置信度确定 N-亚硝胺药物杂质的癌症风险。以下出版物描述了这些研究的结果:Regul Toxicol Pharm 和 Arch Toxicol。
摘要:具有各向异性热传导特性的材料,由分子尺度结构确定,提供了一种控制纳米级空间中热流的方法。因此,在这里,我们考虑逐层(LBL)膜,它们是多层聚电解质多层的静电组装,预计将在跨平面和平面内方向之间具有不同的热传导特性。我们构建了由带电的固体壁夹住的聚丙烯酸)/聚乙基亚胺(PAA/PEI)LBL膜的模型,并使用分子动力学模拟研究了其各向异性热传导。在跨平面方向上,固体壁和LBL膜之间的热边界电阻以及组成型PAA和PEI层之间的热边界电阻随着电离程度的增加(固体表面电荷密度和每个PAA/PEI分子的电荷数)减小。当电离程度较低时,组成层的跨平面导热率高于块状状态。随着电离程度的增加,线性聚合物PAA的跨平面导热率会降低,因为面式内部的聚合物链的数量增加。在平面内方向上,我们研究了每层的热传导,并发现由于面内链对准,再次发现有效的内部直导导热率。■简介高级热管理是工业领域中常见且不可避免的挑战。1与成分聚合物的散装状态相比,LBL膜中的热传导是三维增强的,因为跨平面方向的静电相互作用和平面方向上的分子比对。热界面材料(TIM)通常插入两个组件(例如热源和水槽)之间,从而有效的热传递从一种到另一个,即减少热电阻。随着高性能设备(例如功率模块)的热产生密度的增加,需要进一步改善TIM。通常,各种类型的热油脂,弹性体,凝胶或相变材料用于TIMS,由聚合物组成,由聚合物组成,具有高热传导性,例如金属,陶瓷和碳材料等偶尔会添加。
purelab分子遗传学和细胞遗传学专业中心是基因组诊断领域的领先实验室,从常规的细胞遗传学到最先进的下一代测序(NGS),提供了广泛的基因检测。我们的遗传中心包括多个专业单元,包括细胞遗传学