•Jennifer Edmunson博士-MSFC PM MMPACT•Frank Ledbetter博士 - 太空制造业中的中小企业(ISM)和MMPACT•Mike Fiske•Mike Fiske - Jacobs/MSFC元素LEAD MMPACT/OLYMPUS/OLYMPUS•MIKE EFFINGER•MIKE EFFINGER - MSFC Electer -MSCCATS MSCCATS•MSFOTART -TRACICAT•MSFOTICY -JOHN TRACICAT•JOHN TRACICAT•JOHN TRACICAT•JOHN TRACICAT•MSFCICT•JOHN TRACICAT• (PT)高级制造•Mark Hilburger博士 - PT发掘,施工和装备•Jason Ballard - 首席执行官Icon Technologies•Evan Jensen - Evan Jensen - Icon PM MMPACT•搜索+ -Icon/MMPACT LUNAR LUNAR LUNAR建筑设计概念•Bjarke Ingels Group -iCon/mmpact lunar架构概念•彼得·柯林斯(Peter Collins) - 宾夕法尼亚州立水泥和地球聚合物
摘要Apollo Lunar地震数据中看到的强烈地震散射是最具特征的特征之一,这使地震信号与在地球上观察到的信号大不相同。散射被认为归因于地下异质性。虽然月球的异质结构反映了过去的地质活动和进化过程,但详细的描述仍然是一个悬而未决的问题。在这里,我们提出了通过完整的3D地震波传播模拟得出的上月壳中的地下异质性的新模型。我们的模拟成功地重现了阿波罗地震观测,从而导致了月球散射特性的重大更新。结果表明,月球的散射强度比地球上异质区域的散射强度高约10倍。量化的散射参数可能会使我们对月球的表面演化过程有限制,并使比较研究能够回答一个基本问题,即为什么地震特征在各种行星体上有所不同。
•雄心勃勃的时间表:人类着陆系统计划的目的是在79个月内完成其开发(从项目开始启动),比NASA主要项目的平均值短13个月。人类太空飞行的复杂性表明,期望该计划完成开发的速度比NASA大型项目的平均水平快一年以上是不现实的,其中大多数不是人类的太空飞行项目。gao发现,如果开发的时间与NASA大项目的平均水平一样长,则Artemis III任务可能会发生在2027年初。•延迟关键事件:截至2023年9月,人类着陆系统计划将13个关键事件中的八项推迟至少6个月。其中两项活动已延迟到2025年,这是计划推出的那一年。延迟是部分是由轨道飞行测试引起的,轨道飞行测试旨在证明发射车和着陆器在飞行中的某些功能。该测试延迟到2023年4月7个月。随后,当车辆偏离预期轨迹并开始滚动时,它被尽早终止。随后的测试取决于成功完成第二轨道飞行测试。
月球表面或向火星任务的基础是人类太空的潜在目的地。这些方案构成了一些新的挑战,因为任务的环境和操作条件将与国际空间站(ISS)的环境和操作条件有很大差异。一个关键参数将是增加任务持续时间和与地球更远的距离,需要与地球资源尽可能独立的生命支持系统(LSS)。ISS的当前LSS物理化学技术可以回收90%的水,并从宇航员的呼出CO 2中恢复42%的O 2,但它们无法生产食物,目前只能使用生物学来实现这一食物。未来的LSS很可能包括当前正在使用的其中一些技术,但还需要包括生物组件。潜在的生物候选者是微藻,与较高的植物相比,其收获指数,更高的生物量生产率和更少的水。在过去的几十年中,已经研究了几种藻类物种的空间应用,这是一个有希望的和广泛研究的物种。c. ulgaris是球形单细胞生物,平均直径为6 µm。它可以在广泛的pH和温度水平以及CO 2浓度中生长,并且表现出高度抗跨污染和机械剪切应力的耐药性,使其成为长期LSS的理想生物。为了连续和有效地产生LSS所需的氧气和食物,微藻需要在良好的控制和稳定的环境中生长。因此,除了生物学方面,培养系统的设计,即光生反应器(PBR),也至关重要。Even if research both on C. vulgaris and in general about PBRs has been carried out for decades, several challenges both in the biological and technological aspects need to be solved, before a PBR can be used as part of the LSS in a Moon base.其中包括:对藻类的辐射影响,部分重力下的操作,选择用于耕种和食物加工所需的硬件,系统自动化以及长期性能和稳定性。
Omni-Heat™ Infinity 是 Columbia Sportswear 开发的一项专有热反射技术,将随 Intuitive Machines 即将发射的 Nova-C 月球着陆器进入太空。在此次发射前的实验室模拟中,Intuitive Machines 的研究人员确定,Columbia 创新的 Omni-Heat Infinity 面料的金色金属箔将有助于使月球着陆器免受太空严酷温度的影响,太空温度可能在 -250° 到 250° 华氏度之间变化。
虚拟现实(VR)中的交互式模拟提供了一种相对具有成本效益的替代方案,他们因缺乏现实世界部署的忠诚而面临批评。本文探讨了被动性触觉界面在弥合模拟和现实世界中的圆锥形评估之间的差距时的应用。利用被动性触觉道具(设备模型和宇航员手套),我们仔细地重新创建了Apollo 12任务程序,并与经验丰富的宇航员和其他太空专家一起对其进行了评估。定量和定性发现表明,触觉增加了存在和实施方案,从而提高了用户反射的感知模拟保真度和有效性。我们通过讨论被动触觉方式在促进月球及以后的人类努力的早期评估中的潜在作用来得出结论。
熔融月壤电解作为一种原位资源利用 (ISRU) 技术,有可能在月球表面生产氧气和金属合金;为地月空间探索,以及最终的火星太空探索打开新的大门。这项研究探讨了控制电解气泡形成、生长、分离和上升的基本物理学。为此,开发并运行了计算流体动力学 (CFD) 模型,以模拟水电解、熔盐电解 (MSE) 和熔融月球月壤 (MRE) 电解在多个失重水平下的情况。结果表明,失重、电极表面粗糙度(可能是由于表面退化)、流体性质和电极方向都会影响电解效率,甚至可能通过延迟气泡分离而停止电解。在设计和操作失重水平下的电解系统时,必须考虑这项研究的结果。
根据阿尔特弥斯计划,NASA 计划重返月球表面,这次是长期停留。阿波罗任务认为尘埃是月球表面作业面临的主要挑战。这包括从一点到另一点的旅行。人们一直在努力开发防止尘埃进入设备、使设备更耐尘和改善除尘效果的技术。然而,长时间在尘埃环境中有效运行仍然是一个悬而未决的问题。在这里,我们探讨了使用缆车、缆车和高空滑索在尘埃之上进行设备和材料转移以及人员远足。讨论了优缺点、潜在架构、推进和材料。还介绍了融入正在进行的阿尔特弥斯计划的步骤。
在2004年,乔治·W·布什总统和美国国家航空航天局管理员肖恩·奥基夫(Sean O'Keefe)发布了对太空探索的愿景,该景观试图“在2020年之前人类重返月球,以准备人类的探索火星和其他目的地。” 3该计划还提供了一个普遍的愿景,即管理员可以用来“实施具有可衡量的里程碑的集成,长期机器人和人类勘探计划,并根据可用资源,累积的经验和技术准备就绪执行。”同年,国会通过了2005年的《美国国家航空航天局授权法》,该法指示NASA“建立一项计划,在月球上发展持续的人类存在,以促进太空中的探索,科学,商业和美国的优势,并作为对未来对火星和其他