单向函数的存在是经典cryp-图表中最基本的假设之一。在量子世界中,有些证据表明,即使单向函数不存在,也可以存在一些加密原语[Kretschmer,TQC 2021; Morimae和Yamakawa,Crypto 2022; Ananth,Qian和Yuen,Crypto 2022]。因此,我们在量子密码学中存在以下重要的开放问题:量子密码学中最基本的假设是什么?In this direction, [Brakerski, Canetti, and Qian, ITCS 2023] recently defined a notion called EFI pairs, which are pairs of efficiently generatable states that are statistically distinguishable but computationally indistinguishable, and showed its equivalence with some cryptographic primitives including commitments, oblivious transfer, and general multi-party computations.但是,他们的工作着重于决策类型的基础,并且不涵盖搜索类型的原始图,例如量子货币和数字签名。在本文中,我们研究了单向状态发生器(OWSG)的性质,这是Morimae和Yamakawa提出的单向函数的量子类似物。我们首先重新访问OWSG的定义,并通过允许混合输出状态进行概括。然后我们显示以下结果。
[Crépeau,Kilian'88; , Bartusek、Coladangelo、Khurana、Ma'21; Grilo, Lin, Song, Vaikuntanathan'21] • 没有 OWF 的 MPC [Kretschmer'21; Ananth,Q,Yuen'22; [森前,山川 '22]
单向函数的存在是经典加密策略中最基本的假设之一。在量子世界中,有些证据表明,即使单向函数不存在,也可以存在一些加密原语[Kretschmer,TQC 2021; Morimae和Yamakawa,Crypto 2022; Ananth,Qian和Yuen,Crypto 2022]。因此,我们在量子密码学中存在以下重要的开放问题:量子cryp- tography中最基本的假设是什么?In this direction, [Brakerski, Canetti, and Qian, ITCS 2023] recently defined a notion called EFI pairs, which are pairs of efficiently generatable states that are statistically distinguishable but com- putationally indistinguishable, and showed its equivalence with some cryptographic primitives including commitments, oblivious transfer, and general multi-party computations.但是,他们的工作着重于决策类型的基础,并且不涵盖搜索类型的原语,例如量子货币和数字签名。在本文中,我们研究了单向状态发生器(OWSG)的性质,这是Morimae和Yamakawa提出的单向函数的量子类似物。我们首先重新审视OWSG的定义,并通过允许混合的输出状态概括它。然后我们显示以下结果。
量子计算优势是指容易用于量子计算的计算任务的存在,但对于经典的计算很难。无条件显示量子优势超出了我们当前对复杂性理论的理解,因此需要一些计算假设。哪种复杂性假设是必要的,并且足以满足量子优势?在本文中,我们证明存在量子性(iv-poq)时,并且仅当存在经典的单向拼图(Owpuzzs)时,就存在量子性的量化证明(IV-POQ)。据我们所知,这是第一次获得量子优势的完全加密表征。iv-poq是量子性证明(POQ)的概括,其中verifier在交互期间有效,但随后可能会使用无限的时间。IV-POQ捕获先前研究的各种类型的量子优势,例如基于采样的量子优势和基于搜索的量子优势。 先前的工作[Morimae和Yamakawa,Crypto 2024]表明,可以从OWFS构建IV-POQ,但是从较弱的假设中构建IV-POQ的结构是敞开的。 我们的结果解决了开放问题,因为据信owpuzzs比OWF弱。 owpuzzs是许多量子加密原语所暗示的最基本的量子加密原语之一,而不是单向函数(OWFS),例如伪和单位单位(PRUS),pseudorandom andom state state nate state Intate Generators(PRSGS)和单向状态生成器(单向状态生成器(OWN)。 因此,IV-POQ与经典的Owpuzzs之间的等效性强调,如果没有量子优势,那么这些基本的加密原始原始物将不存在。IV-POQ捕获先前研究的各种类型的量子优势,例如基于采样的量子优势和基于搜索的量子优势。先前的工作[Morimae和Yamakawa,Crypto 2024]表明,可以从OWFS构建IV-POQ,但是从较弱的假设中构建IV-POQ的结构是敞开的。我们的结果解决了开放问题,因为据信owpuzzs比OWF弱。owpuzzs是许多量子加密原语所暗示的最基本的量子加密原语之一,而不是单向函数(OWFS),例如伪和单位单位(PRUS),pseudorandom andom state state nate state Intate Generators(PRSGS)和单向状态生成器(单向状态生成器(OWN)。因此,IV-POQ与经典的Owpuzzs之间的等效性强调,如果没有量子优势,那么这些基本的加密原始原始物将不存在。等效性还意味着量子助理是Owpuzzs应用程序的一个示例。承诺以外,以前没有知道Owpuzzs的应用。我们的结果表明,量子优势是Owpuzzs的另一种应用,它解决了[Chung,Goldin和Gray,Crypto 2024]的开放问题。此外,它是Owpuzzs的第一个量子计算 - 经典交流(QCCC)。为了显示主要结果,我们介绍了几个新概念,并显示了一些将引起独立感兴趣的结果。尤其是我们引入了一个交互式(和平均值)版本的采样问题,其中该任务是通过两个量子脉络化的tompolynomial-timealgorithm之间的经典相互作用来采样转录本。我们表明,QuantumAdvantional的交互式抽样问题等同于IV-POQ的存在,IV-POQ被认为是Aaronson结果的交互式(和平均值)版本[Aaronson,TCS,TCS 2014],SAMPBQP = SAMPBQP = SAMPBPP。最后,我们还引入了零知识的IV-POQ,并为其存在的研究足够和必要的条件。
在经典密码学中,引入了公共随机串和公共参考串模型来解决在普通模型中无法实现的密码任务。在公共参考串模型中,有一个可信设置,它会生成一个各方都可以访问的字符串。在公共随机串模型中,所有参与方可用的公共字符串是均匀随机采样的,从而避免了对可信设置的需要。因此,公共随机串模型是两者中更理想的模型。多年来,人们针对这两个模型提出了许多构造,包括非交互式零知识 [ BFM19 ]、通用组合下的安全计算 [ CF01 ;CLOS02 ] 和两轮安全计算 [ GS22 ;BL18 ]。研究量子密码协议的类似模型是值得的。在这种情况下,可以选择定义本质上是量子的模型。例如,我们可以定义一个模型,其中一个可信设置产生一个量子态,并且参与密码系统的每一方都会收到一个或多个该量子态的副本。事实上,Morimae、Nehoran 和 Yamakawa [ MNY23 ] 和 Qian [ Qia23 ] 的两篇作品都考虑了这种模型,称为通用量子参考弦模型 (CQRS)。他们提出了在这个模型中的无条件安全承诺。量子承诺是量子密码学的一个基础概念。近年来,量子承诺因其对安全计算的意义 [ BCKM21;GLSV21 ] 而得到了广泛的研究 [ AQY22;MY21;AGQY22;MY23;BCQ22;Bra23 ]。在普通模型中不可能实现信息理论上安全的承诺 [ LC97;May97;CLM23 ],这一事实使得 [ MNY23;Qia23 ] 的贡献相当有趣。虽然 CQRS 是公共参考弦模型的量子类似物,但我们可以问是否存在公共随机弦模型的量子类似物。Chen、Coladangelo 和 Sattath [ CCS24 ](以下简称 CCS)最近独立并同时进行的一项工作引入了一个模型,称为公共 Haar 随机状态模型 (CHRS)。在这个模型中,系统中的每个参与方都会收到许多 iid Haar 状态的多个副本。他们在这个模型中提出了伪随机性和承诺的构造。我们工作的目标是进一步研究这个模型。
量子计算优势是指存在一些对于量子计算来说很容易但对于经典计算来说很难的计算任务。无条件地展示量子优势超出了我们目前对复杂性理论的理解,因此需要一些计算假设。哪种复杂性假设对于量子优势是必要且充分的?在本文中,我们证明了当且仅当存在经典安全单向谜题 (OWPuzzs) 时,量子性低效验证者证明 (IV-PoQ) 才存在。据我们所知,这是第一次获得量子优势的完整密码学表征。IV-PoQ 是量子性证明 (PoQ) 的泛化,其中验证者在交互过程中是高效的,但之后可能会使用无限时间。IV-PoQ 捕获了以前研究过的各种类型的量子优势,例如基于采样的量子优势和基于搜索的优势。先前的研究 [Morimae and Yamakawa, Crypto 2024] 表明 IV-PoQ 可以从 OWF 构建,但从较弱的假设构建 IV-PoQ 仍未可行。我们的结果解决了这个悬而未决的问题,因为人们认为 OWPuzzs 比 OWFs 弱。OWPuzzs 是最基本的量子密码原语之一,它由许多比单向函数 (OWF) 弱的量子密码原语所暗示,例如伪随机幺正 (PRU)、伪随机状态生成器 (PRSG) 和单向状态生成器 (OWSG)。因此,IV-PoQ 与经典安全 OWPuzzs 之间的等价性强调,如果没有量子优势,那么这些基本密码原语就不存在。这种等价性还意味着量子优势是 OWPuzzs 应用的一个例子。除了承诺之外,以前没有 OWPuzzs 的应用。我们的结果表明,量子优势是 OWPuzzs 的另一个应用,它解决了 [Chung, Goldin, and Gray, Crypto 2024] 的悬而未决的问题。此外,它是 OWPuzzs 的第一个量子计算经典通信 (QCCC) 应用。为了展示主要结果,我们引入了几个新概念并展示了一些独立有趣的结果。特别是,我们引入了一个交互式(和平均情况)版本的采样问题,其中的任务是对两个量子多项式时间算法之间的经典交互获得的转录进行采样。我们表明交互式采样问题中的量子优势等同于 IV-PoQ 的存在,它被认为是 Aaronson 结果 [Aaronson,TCS 2014] 的交互式(和平均情况)版本,SampBQP ̸ = SampBPP ⇔ FBQP ̸ = FBPP 。最后,我们还引入了零知识 IV-PoQ 并研究了它们存在的充分必要条件。
众所周知,对于几乎所有现代经典和量子加密任务来说,计算假设都是必需的。对经典隐身性的最小假设是单向函数(OWF)的存在。该假设已知与许多其他加密应用的存在相当,例如伪数编号生成,伪界函数,数字签名,对称键加密和承诺(请参阅,例如,参见[GOL01,GOL04])。量子设置呈现出截然不同的图片:已知各种量子原始图,足以构建密码学,但可能比单向功能弱。最近,Tomoyuki Morimae创造了Microcrypt一词,是Impagliazzo的五个世界[IMP95]的补充,是指此类量子原始素(及其加密应用)2。MicroCrypt的租户之一是伪兰态(PRS),首先由JI,Liu和Song [JLS18]引入。这是一个有效生成的量子状态{| ϕk⟩}k∈{0,1} n,因此很难在多个副本上区分(a)|的多个副本。 ϕ k⟩从家族中采样,(b)均匀(HAAR)随机量子状态。ji,liu和Song还提供了OWF的Black Box结构。许多加密应用是基于MicroCrypt假设而知道的。也许更令人惊讶的是,MicroCrypt还包含一些隐藏狂的任务,即安全的多方计算[MY22B,BCKM21,GLSV21]和Quantum Publicum public Keys [BGHD + 23]。Subsequent to [ JLS18 ], many other tenants of Microcrypt have been introduced, such as pseudorandom function-like states ( PRFS ) [ AGQY22 ], efficiently samplable statistically far-but-computationally-indistinguishable pairs of (mixed) quan- tum states ( EFI pairs) [ Yan22 , BCQ23 ], one-way state generators [ MY22b ]和伪兰态具有破坏证明[BBSS23]。到目前为止,所有主要微型晶体3的变体已被证明在微晶中,包括对称 - 关键加密,承诺(最近,也承诺对量子状态[GJMZ23]),PRGS,PRFS,PRFS,GALBLED CICUCTITS,GALBLED CICUCTITS,MESSAGE AUTHERTICATION代码和数字信号。引起惊喜的关键因素是不可思议的和鲁迪奇的单向功能(微型级)和公钥加密4和遗忘转移(Cryptomania)[IR89]之间的分离。新的结构规定了古典不可能,因为它们涉及量子状态,例如承诺和多方计算取决于量子通信,加密方案具有量子密文。这些量子原语的证据比微小的弱点弱来自Kretschmer的PRS和OWF S [KRE21]的量子甲骨文分离。分离的甲骨文由一个族{u n}n∈N组成,其中u n是指数列表的许多HAAR随机n -qubit nimaries {u k}k∈{0,1} n。相对于此甲骨文,有一个简单的prs结构:k∈{0,1} n,让| ϕ k⟩:= u k | 0 n⟩。请注意,如果我们只考虑UNINERIES U K在标准基础上的行动,即一组状态U K | x⟩对于x∈{0,1} n,因此,对于每个n,可以将kretschmer的甲骨文视为提供2 2 2 n“本质上是Haar随机”状态5。在另一项作品中,Bouland,Fefferman和Vazirani [BFV19]显示了6 a prs构造相对于一个家庭{u n}n∈N,其中u n =(u,u - - 1)对于HAAR Random