量子计算优势是指存在一些对于量子计算来说很容易但对于经典计算来说很难的计算任务。无条件地展示量子优势超出了我们目前对复杂性理论的理解,因此需要一些计算假设。哪种复杂性假设对于量子优势是必要且充分的?在本文中,我们证明了当且仅当存在经典安全单向谜题 (OWPuzzs) 时,量子性低效验证者证明 (IV-PoQ) 才存在。据我们所知,这是第一次获得量子优势的完整密码学表征。IV-PoQ 是量子性证明 (PoQ) 的泛化,其中验证者在交互过程中是高效的,但之后可能会使用无限时间。IV-PoQ 捕获了以前研究过的各种类型的量子优势,例如基于采样的量子优势和基于搜索的优势。先前的研究 [Morimae and Yamakawa, Crypto 2024] 表明 IV-PoQ 可以从 OWF 构建,但从较弱的假设构建 IV-PoQ 仍未可行。我们的结果解决了这个悬而未决的问题,因为人们认为 OWPuzzs 比 OWFs 弱。OWPuzzs 是最基本的量子密码原语之一,它由许多比单向函数 (OWF) 弱的量子密码原语所暗示,例如伪随机幺正 (PRU)、伪随机状态生成器 (PRSG) 和单向状态生成器 (OWSG)。因此,IV-PoQ 与经典安全 OWPuzzs 之间的等价性强调,如果没有量子优势,那么这些基本密码原语就不存在。这种等价性还意味着量子优势是 OWPuzzs 应用的一个例子。除了承诺之外,以前没有 OWPuzzs 的应用。我们的结果表明,量子优势是 OWPuzzs 的另一个应用,它解决了 [Chung, Goldin, and Gray, Crypto 2024] 的悬而未决的问题。此外,它是 OWPuzzs 的第一个量子计算经典通信 (QCCC) 应用。为了展示主要结果,我们引入了几个新概念并展示了一些独立有趣的结果。特别是,我们引入了一个交互式(和平均情况)版本的采样问题,其中的任务是对两个量子多项式时间算法之间的经典交互获得的转录进行采样。我们表明交互式采样问题中的量子优势等同于 IV-PoQ 的存在,它被认为是 Aaronson 结果 [Aaronson,TCS 2014] 的交互式(和平均情况)版本,SampBQP ̸ = SampBPP ⇔ FBQP ̸ = FBPP 。最后,我们还引入了零知识 IV-PoQ 并研究了它们存在的充分必要条件。
主要关键词