在预测具有平行颚夹具的机器人抓地力已得到很好的研究并广泛应用于机器人操作任务中,但多手指手的自然人抓握生成研究的研究仍然是一个非常具有挑战性的问题。在本文中,我们建议在世界上给定3D对象产生人类的抓。我们的主要观察结果是,对手接触点和物体接触区域之间的一致性建模至关重要。也就是说,我们鼓励先前的手接触点靠近对象表面,并且对象共同的接触区域同时通过手接触。基于手动接触一致性,我们在训练人类掌握的一代模型中设计了新的目标,还设计了一个新的自我监督任务,该任务允许在测试时间之前调整掌握生成网络。我们的实验表明,人类掌握的产生显着改善,而对最先进的方法的差距很大。更有趣的是,通过在测试时间内使用自我监督的任务来优化模型,它可以帮助您在看不见和室外对象上获得更大的收益。
最初在杆状病毒中发现的凋亡蛋白(IAP)的抑制剂存在于从病毒到酵母再到人类的生物体中[1]。的特征是存在一到三个串联杆状病毒IAP重复序列(bir; a of。80 amino acid zinc finger motif ), there are currently eight human IAPs: neuronal apoptosis inhibitory protein (‘NAIP'), cellular IAP1, cellular IAP2, X-linked IAP (XIAP), melanoma-associated–IAP (‘ML- IAP'), IAP-like protein-2 (‘ILP-2'), survivin and BRUCE (BIR重复含泛素 - 偶联酶)(在[2]中进行了综述)。顾名思义,家庭的创始成员可以预防昆虫和哺乳动物细胞中的凋亡刺激[3,4]。在多种细胞过程中提出了进一步的IAP作用,包括对细胞分裂的控制[5],以及许多不同的信号级联反应,例如转化生长因子β激活,C-JUN N末端激酶调节和核因子κB激活已提出涉及XIAP [6-8]。尽管有上述可能性,但最容易证明的XIAP功能是直接的caspase抑制剂。在人IAP中,XIAP是胱天蛋白酶和凋亡中最有效的抑制剂。例如,几个组显示了人XIAP直接抑制胱天蛋白酶3、7和9(在[2,9]中进行了综述)。XIAP包含三个串联BIR结构域,其次是C端环(非常有趣的新基因)域。XIAP的解剖尚未揭示第一个BIR结构域的功能(BIR1)。然而,具有N端连接器的第二个BIR结构域(BIR2)是必要的,并且足以抑制密切相关的executioner caspase 3和7 [4,10,11],而第三个BIR域(BIR3)负责抑制启动器caspase 9 [10,12]。
摘要:植物上皮调节是基因序列的DNA甲基化,非编码RNA调节和组蛋白修饰,而无需改变基因组序列,因此调节基因表达模式和植物的生长过程以产生可遗传的变化。植物中的上皮调节可以调节植物对不同环境压力的反应,调节果实的生长和发育等。基因组编辑可以通过针对特定的基因组特异性基因座的设计和效率编辑来有效地提高植物遗传效率,该基因组特异性基因座具有特定的核酸酶(例如锌纤维核酸核酸酶(ZFN)(ZFN)),转录激活剂的定期序列(TALEN)的定期序列(TALEN)和胶合序列的杂物,并散发出杂物。 (CRISPR/CAS9)。随着研究的进展,CRISPR/CAS9系统由于其高编辑效率和结果的快速翻译而广泛用于农作物育种,基因表达和上皮修改。在这篇综述中,我们总结了CRISPR/CAS9在表观基因组编辑中的最新进展,并期待该系统在植物表观遗传学修改中的未来开发方向,以参考CRISPR/CAS9在基因组编辑中的应用。
通过改善植物农艺性状的基本特征,农业生物技术和基因工程的最新进展为粮食和农业部门带来了许多好处。使用序列特异性核酸酶(SSN)的靶向基因组编辑提供了一种通用方法,用于诱导广泛的生物体和细胞类型的靶向缺失,插入和精确的序列变化。基因组编辑工具,例如siRNA介导的RNA干扰,转录激活剂样核酸酶(Talens)和用于DNA修复的锌 - 纤维核酸酶(ZFN),已广泛用于商业用途。然而,发现CRISPR/CAS9系统作为基因组编辑工具,它彻底改变了生命科学领域。在细菌和古细菌中首次发现了定期间隔的短质体重复序列(CRISPR)作为病毒学防御性DNA段。CRISPR-CAS9作为一种先进的分子生物学技术,可以在任何农作物物种中产生精确的靶向修饰。crispr/cas9由于其效率,特异性和可重复性,该系统被认为是生物技术领域的“突破”。除了其在生物技术领域的应用外,它还广泛用于作物改善中。
摘要 - IntraCorical Brain机机界面已显示出对瘫痪者恢复功能的希望,但是将其转换为便携式和可植入的设备受到高功耗的阻碍。与标准的实验性脑机插图相比,最近的设备已大大降低了功耗,但是,但是stillrequirewiredorwiredorwiredlessconnections可以计算硬件以进行特征提取和推理。在这里,我们在180 nm CMO中引入了一种神经记录和解码(神经)应用程序(神经)应用程序(ASIC),可以提取神经尖峰特征并实时预测二维行为。为了减少放大器和特征提取功率消耗,神经辐射具有一个硬件加速器,用于从物质内尖峰信号中提取尖峰带功率(SBP),并包括具有固定点矩阵加速器(MAU)的M0处理器,以实现效率和效率的分解。我们通过从植入犹他州微电极阵列植入的非人类灵长类动物的SBP验证设备功能验证了功能,并预先指定了一个和二维的手机运动,Mon-键试图使用稳态的kalmanfientate kalmanfilmanfilter lter(sskf)试图在闭环中执行。使用Neurad的实时预测,猴子达到了100%的成功率,并通过
Zn 2+是大约850个人类转录因子所需的必需金属。这些蛋白质如何获得其必需的Zn 2+辅因子,以及它们是否对细胞中不稳定的Zn 2+池的变化敏感仍然是开放的问题。使用ATAC-SEQ进行可访问的染色质的区域,并结合转训练因子富集分析,我们研究了不稳定锌池的增加和减少如何影响染色质的可及性和转录因子富集。我们发现685个转录因子基序被差异富集,对应于507个独特的转录因子。在启动子与基因间区域的扰动模式和转录因子的类型截然不同,锌 - 纤维转录因子在升高的Zn 2+中强烈富集在基因间区域中。测试ATAC-SEQ和转录因子富集分析预测是否与转录因子结合的变化相关,我们使用ChIP-QPCR来实现六个p53结合位点。我们发现,对于六个目标,p53结合与ATAC-SEQ确定的局部可访问性相关。这些结果降低了不稳定锌的变化改变染色质的可及性和转录因子与DNA的结合。
摘要 — 皮层内脑机接口有望帮助瘫痪患者恢复功能,但由于其高功耗,将其转化为便携式和植入式设备受到阻碍。与标准实验性脑机接口相比,最近的设备已大幅降低了功耗,但仍需要有线或无线连接到计算硬件以进行特征提取和推理。在这里,我们介绍了一种 180 nm CMOS 神经记录和解码 (NeuRAD) 专用集成电路 (ASIC),它可以提取神经脉冲特征并实时预测二维行为。为了降低放大器和特征提取的功耗,NeuRAD 具有一个硬件加速器,用于从皮层内脉冲信号中提取脉冲带功率 (SBP),并包括一个带有定点矩阵加速单元 (MAU) 的 M0 处理器,用于高效灵活地解码。我们通过记录植入犹他微电极阵列的非人类灵长类动物的收缩压,并使用稳态卡尔曼滤波器 (SSKF) 预测猴子试图在闭环中执行的一维和二维手指运动,验证了设备的功能。使用 NeuRAD 的实时预测,猴子实现了 100% 的成功率,平均目标获取时间为 0.82 秒,使用
摘要:过去二十年,基因组编辑工具取得了巨大进步,为先天性和后天性疾病的基因治疗提供了创新而有效的方法。锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和 CRISPR-Cas9 已通过体外造血干细胞 (HSC) 基因治疗应用于遗传疾病(即血红蛋白病、范康尼贫血和遗传性免疫缺陷)以及传染病(即 HIV),而最近开发的基于 CRISPR-Cas9 的系统使用碱基编辑器和主要编辑器以及表观基因组编辑器为基因治疗提供了更安全的工具。然而,体外添加或编辑 HSC 基因的方法复杂、具有侵入性、技术难度大、成本高且有毒性。体内基因添加或编辑有望将基因治疗从一种高度复杂的策略转变为一种“用户友好型”方法,最终成为一种广泛可用、高度可及且可能负担得起的治疗方式。在本篇综述文章中,我们基于 30 多年来体外 HSC 基因治疗的经验教训,讨论了体内 HSC 基因编辑的概念、工具、取得的进展以及临床转化面临的挑战。