摘要。风电场的性能受到涡轮 - 摩擦相互作用的显着影响。通常,通过测量其Nacelle风速或使用涉及跨转子盘的一组离散点的数值方法来评估其Nacelle风速或通过评估其转子平均风速来对每个涡轮机进行量化。al-尽管文献中存在各种点分布,但我们引入了两种分析表达式,用于整合非轴对称的高斯唤醒,这解释了上游Turbine Yaw和Wind Veer产生的唤醒拉伸和剪切。分析溶液对应于将目标涡轮机建模为圆形执行盘和等效的矩形执行器盘。衍生的表达式具有多功能性,可容纳尾流源(上游涡轮机)和目标涡轮机之间的任何偏移和轮毂高度差。验证对转子平均的数值评估使用2000个下游位置的2000平均点置于尾流源的平均点,这表明在极端的veer条件下,在小/中度的逆转效应下,在小/中度的vever效应下,在小/中度的vever效应下两种分析溶液都具有出色的一致性。与使用16个平均点的矢量数值平均值相比,两种态解决方案在计算上都是有效的,而圆盘溶液的速度较慢约为15%,而矩形盘溶液的速度约为15%。此外,分析表达式被证明与多个唤醒叠加模型兼容,并且是可区分的,为推导分析梯度提供了基础,这对于基于优化的应用程序可能是有利的。
摘要。漂浮的海上风力涡轮机(FOWTS)配备了各种传感器,可为涡轮机监视和控制提供有价值的数据。由于技术和运营挑战,用于精确获得的系泊线和Fairleads的负载估计可能很难且昂贵。这项研究深入研究了一种方法,其中将模拟的浮游运动测量和风速测量得出,从前瞻性的基于Nacelle的Lidar得出,被用作不同类型的神经网络的输入,以估计Fairlead张力时间张力时间序列和损害等效载荷(DELS)。fairlead张力与浮游器的动力学和作用本质上相关。因此,我们系统地分析了浮油动力学对Fairlead张力时间序列和DELS预测质量的个人贡献。通过基于NACELLE的LIDAR获得的风速测量值在近海风力涡轮机上固有地影响了平台的动力学,尤其是旋转螺距的位移和流量器的潮流位移。因此,激光雷达风速数据间接包含浮雕的动态行为,这反过来又控制着Fairlead载荷。这项研究杠杆测量的视线(LOS)风速以估计Fairlead紧张局势。该模型的训练数据是由启用的风力涡轮机仿真工具与数值LIDAR模拟框架Vicondar一起生成的。使用长期短期内存(LSTM)网络预测Fairlead张力时间序列。del预测是使用三种不同方法进行的。首先,DEL是根据预测的时间序列计算得出的。其次,使用序列至一lstm体系结构预测DELS,第三,使用卷积神经网络体系结构预测DELS。结果表明,可以从浮游运动时间序列中准确估算Fairlead张力时间序列和DEL。此外,我们发现LiDAR LOS测量值不会改善时间序列或如果可用运动测量结果。然而,使用LiDar测量作为DEL预测的模型输入,导致与使用层的位移测量相似的精度。
3.9.1. 通行权灯 ................................................................................................................ 81 3.9.2. 频闪灯 ................................................................................................................ 81 3.9.3. 位置灯 ................................................................................................................ 81 3.9.4. 发动机舱灯 ............................................................................................................. 81 3.9.5. 机翼着陆灯 ............................................................................................................. 81 3.9.6. 机头滑行灯 ............................................................................................................. 82 3.9.7. 防撞灯 ............................................................................................................. 82 3.9.8. 地面泛光灯 ............................................................................................................. 82 3.9.9. 下锁灯 ............................................................................................................. 82 3.9.10. 内部/紧急疏散灯 ............................................................................................. 82 3.9.11. 3.9.12. 白炽灯 ................................................................................................................ 83 3.9.13. 卤素灯 ................................................................................................................ 83 3.9.14. 发光二极管 ........................................................................................................ 84
规格异步,3 kW,3〜400 VAC,50 Hz YAW变速箱:类型多级变速箱制造商Bonfiglioli图纸编号L7120T023700(版本2019-07-29) 061.70.3024.000.48.150d Rev.液压系统:制造商Hydratech Industries型号HWP液压系统B6900绘图编号B6900-D,Rev.0液压图B6900-D YAW制动器:JHS-32制造商Dellner制动器JHS GMBH绘图编号VA001914 Rev.c nacelle封面:材料聚酯树脂制造商印度斯坦FRP产品绘图编号26119932旋转器:材料GRP制造商印度斯坦FRP产品绘图编号26119526转换器:型号AMSC PIN 73001135制造商AMSC AMSC AMSC额定功率3300 kW(Smart Boost Power)
驾驶舱内锁定绿灯亮起。在正常操作(动力伸展)下,执行器的最终运动会接合挂钩,但在自由落体伸展中,使用弹簧来接合下锁挂钩。如果三个起落架中的任何一个未能下锁,起落架不安全红色警告灯将亮起。4.0 起落架指示和声音警告。4.01 当起落架完全放下时,三个绿灯指示起落架已放下并锁定,左发动机舱上的凸面镜使飞行员能够确认起落架的位置。如果“导航灯”打开,起落架灯会自动变暗。如果起落架未完全锁定在选定位置,仪表板上的“红色警告”灯将亮起。4.02 油门象限中的微动开关在以下情况下激活警告喇叭:
任务 1:调查风力涡轮机制造过程中的工艺和性能挑战(ORNL 和 NREL)。(已完成)任务 2:AM 风力涡轮机组件/工具的成本/性能分析(现有 AM 能力)。(ORNL 和 NREL)。(已完成)任务 3:风险分析和缓解策略(现有 AM 能力)。(ORNL 和 NREL)。(已完成)任务 4:风力涡轮机组件/工具的成本/性能分析、风险分析和缓解策略(即将推出的 AM 能力)。(ORNL 和 NREL)。(已发布报告:风能系统中增材制造的现状)任务 5:行业合作以改进 AM 成本/性能分析(ORNL、NREL 和 Vestas)。(已完成)任务 6:利用 AM 技术制造机舱结构骨架节点 (SN) 以进行比较分析并发布结果。(出版物待发布)
向可再生能源的能源转型正在加速,而风力发电在这一发展中占据了主要份额。为了进一步挖掘风力发电的潜力,风力涡轮机需要高度创新以降低成本并提高性能。使用机舱测试台 (NTB) 可以降低成本。这些可以额外提高风力涡轮机的性能,因为可以在开发过程的早期阶段以及涡轮机安装到现场之前进行测试和验证。在这种情况下,需要对 NTB 进行标准化测试和验证流程,以确保质量并实现不同 NTB 之间的可比性。由于没有针对 NTB 效率测量的标准化测试,因此该项目满足了这一需求。基于可追溯测量的标准化效率确定方法将使在不同测试台上收集的测量数据具有可比性,不确定度小于 1%。