[1]赫斯,c。克鲁斯,r。睡眠是,d。 Stiller,A.-C。 Wenies,s。 Cuttlers,r。欧洲创伤阶段,32(2(2),141(2006)。 div>[2] Thursner,P。J。 Wiley跨学科评论:纳米医学和纳米生物学学,1(6),624-699(2009)。 div>[3] Todd,J.-C。 (Ivocar V.&Biziulis,E。(Ivoylar V. Adhese Universal -Scientific Socientation(2015)。 div>[4] Granscog,v。 ADV。 div>功能。 div>mater。 div>1800372(2018)。 div>
摘要 胶质母细胞瘤(GBM)是最常见的恶性脑肿瘤,虽然目前的治疗策略包括手术、化疗和放疗等取得了临床效果并延长了患者的生存期,但对现有疗法的逐渐产生的耐药性导致了高复发率和治疗失败。耐药性产生的机制涉及多种因素,包括药物外排、DNA损伤修复、胶质瘤干细胞和缺氧肿瘤环境,这些因素通常相互关联、相互促进。随着许多潜在的治疗靶点被发现,调控多种耐药相关分子通路的联合治疗被认为是一种有吸引力的策略。近年来,纳米药物通过优化积累、渗透、内化和控制释放彻底改变了癌症治疗方法。通过修饰纳米药物上的配体并与血脑屏障(BBB)上的受体或转运蛋白相互作用,血脑屏障的穿透效率也得到显著提高。此外,联合治疗中不同的药物通常具有不同的药代动力学和生物分布,可通过药物输送系统进一步优化,以最大程度地提高联合治疗的治疗效果。本文讨论了目前基于纳米药物的胶质母细胞瘤联合治疗的成果。本综述旨在为未来胶质母细胞瘤治疗研究提供对耐药机制和基于纳米药物的联合疗法的更广泛理解。关键词 联合治疗;耐药性;胶质母细胞瘤;纳米技术;替莫唑胺
尽管纳米医学在心血管治疗中具有巨大潜力,但其临床应用仍面临挑战。纳米粒子的长期安全性和毒性仍在研究中。人们担心纳米粒子在体内积聚,特别是在肝脏、肾脏和脾脏等器官中,这可能会导致不良影响。严格的临床前和临床研究对于确定纳米材料的安全性和确保它们不会对健康组织造成伤害至关重要。此外,大规模生产纳米粒子及其监管部门的批准仍然是一项复杂的任务,需要在广泛临床使用之前解决。
CRC PolyTarget CRC PolyTarget 的目标是开发治疗感染引发的炎症状态的新策略,以合理设计量身定制的纳米颗粒药物载体为中心。利用基于功能性合成聚合物和(改性)生物聚合物的药理活性纳米颗粒,并对其进行表征,从下至上解决靶向纳米药物的基本问题。基于聚合物库的建立以及纳米颗粒的详细分子和形态表征,研究结构-性能关系,以优化纳米颗粒的生物和药学功能。
摘要:弥漫性大 B 细胞淋巴瘤 (DLBCL) 仍是一种难以治愈的疾病,需要新的治疗模式。在这项研究中,我们阐明了 DLBCL 的治疗协同作用,即使用钉合肽 ATSP-7041 重新激活肿瘤蛋白 p53,从而引发细胞凋亡,并使用 BH3 模拟物 ABT-263 (navitoclax) 增强其对 BCL-2 家族调节的敏感性。虽然这种组合在体外可有效激活 DLBCL 细胞凋亡,但在体内具有高毒性,导致治疗窗口过窄。因此,我们开发了一种靶向纳米药物递送平台,以保持这种组合的治疗效力,同时通过包装和靶向递送钉合肽将其毒性降至最低。我们开发了一种靶向 CD19 的聚合物囊泡,使用聚乙二醇二硫化物与聚丙二醇硫化物 (PEG-SS-PPS) 的嵌段共聚物将 ATSP-7041 递送到 DLBCL 细胞中。在体外优化了细胞内递送,并使用侵袭性人类 DLBCL 异种移植模型在体内进行了验证。ATSP-7041 的靶向递送可实现与 ABT-263 进行系统性联合治疗,从而延缓肿瘤生长、延长生存期且无明显毒性。这项工作证明了聚合物囊泡纳米药物抗原特异性靶向、体内靶向递送钉合肽以及通过直接激活 p53 和 BCL-2 家族调节对 DLBCL 进行协同双重内在凋亡治疗的概念验证。关键词:纳米药物、毒性、靶向、钉合肽、DLBCL、凋亡 D
我们很高兴邀请您为特殊问题做出贡献:“纳米元素技术和纳米医学的最新进展”。本期特刊旨在强调纳米技术在分子生物学和医学领域的应用。纳米技术涉及纳米载体中合成,自然和生物技术药物的包封,以促进癌症治疗,传染病,免疫疾病,组织再生和抗疫苗抗性的治疗作用。研究领域包括以下内容: - 靶向药物输送的功能化纳米载体。- 增强各种组织的生物利用度。- 纳米颗粒,脂质体和其他
·纳米技术增强的危险废物清理的生物修复·纳米医学:使用生物化学标记物的靶向药物输送系统(盐度,干旱)通过纳米颗粒·生化应力标记来评估农作物的纳米颗粒效率·增强植物 - 微生物相互作用以改善农作物的生长·农业化学的智能递送系统,用于对受控释放的农业化学的智能递送系统
管理(2019)Monika Nehra,Neeraj Dilbaghi,Nitin Kumar Singhal,Ashraf Aly Hassan,Ki-Hyun Kim和Sandeep Kumar,环境研究(169),229-236。 https://doi.org/10.1016/j.envres.2018.11.013(如果:6.498)29。抗糖尿病活性通过联合聚合物纳米构造(2019)Ruma Rani,Shakti Dahiya,Dinesh Dhira,Dinesh Dhingra,Neeraj dilla,Neeraj dilbaghi,Ajeet Kaushik,Ajeet Kaushik,K H Kim,K h Kim,Sandeep Kumar,International of Nananomedicine of Nananomedicicine 抗糖尿病活性增强抗糖尿病活性。 https://doi.org/10.2147/ijn.s205319(如果。 :6.761)30。 氧化锰纳米芯片作为一种新型电催化剂,用于直接氧化还原传感抗糖尿病活性增强抗糖尿病活性。 https://doi.org/10.2147/ijn.s205319(如果。:6.761)30。氧化锰纳米芯片作为一种新型电催化剂,用于直接氧化还原传感
癌症是最常见的死亡原因之一,给全社会带来了沉重的经济和医疗负担。随着分子生物学和细胞遗传学的发展,发现肿瘤发生发展的分子机制非常复杂,涉及染色体异常、致癌基因扩增、抑癌基因缺失、生长因子及其受体的上调、肿瘤相关信号转导通路的激活等[1-3]。为了有效治疗患者的癌症,研究人员寻求具有高选择性、小副作用甚至能够克服耐药性的新型抗癌药物。抗癌药物研发现已从细胞毒药物发展到靶向药物和纳米药物[4]。靶向药物和纳米药物的抗癌作用可以通过多种途径介导,从而产生显著的效果[5-9]。杂环化合物由碳原子和非碳原子组成,是许多具有药理和生物学价值的化学物质的重要结构基础。杂环化合物的研究是有机化学的重要组成部分,广泛应用于许多行业,尤其是医药行业[10-13]。目前,杂环化合物是多种药物的主要活性成分,包括镇痛药、抗炎药、抗结核药、抗高血压药、抗抑郁药,甚至抗癌药[14-17]。近几十年来,出现了许多新型杂环靶向药物。纳米医学是一个相对较新的医学研究领域。它涉及使用纳米技术解决医疗问题,在精准医疗方面具有巨大的潜力[18-20]。纳米医学在癌症诊断和治疗中的应用