液体中的脉冲激光消融(PLAL)是一种合成具有控制尺寸和形态的高纯度,无配体纳米材料的技术。这项研究的重点是通过在193 nm处使用重点的脉冲精液激光和2-4 J/cm 2(5 Hz的150 MJ,持续30分钟150 MJ),侧重于MXENE纳米结构(TI₃C₂)的合成。在去离子水和十二烷基硫酸盐分散剂的溶剂混合物中,使用2 mm厚的直径和5 mm的ti₃c₂靶标,在瞬态条件下,在约2,000 k温度和10⁷10⁸10⁸PA压力的瞬态条件下产生纳米结构的mxenes。该方法可最大程度地减少前体和副产品的污染,从而确切地控制纳米颗粒的大小和分布,同时保留结构完整性和功能特性。使用扫描电子显微镜(SEM)和能量色散光谱(EDS)来表征合成的MXENE(EDS),并揭示了不同的形态,例如皱纹的板状结构,例如石墨烯氧化物,均匀的纳米结构,均匀的纳米结构一致的2D FLAKES一致,表明较薄,均匀的合成:均匀的分层:在EDS光谱中观察到氧化。这项研究证明了对产生高质量MXENE纳米颗粒的皮质方法的生存能力,并为纳米材料合成的未来创新提供了基础,用于其他多种2D技术应用。
摘要 - 已经回顾了抗铁磁纳米结构中木元的激发,检测和传播的理论和实验研究。抗铁磁材料的特性,例如不存在宏观磁化,存在强交换相互作用以及复杂的磁晶体结构,使实施新型的内存和功能电子设备使得有可能。微观和纳米级的抗铁磁材料中可能的镁效应的研究需要新的实验和理论方法。在这篇综述中,描述并系统化了磁振荡激发的最新结果 - 磁磁性的抗铁磁材料。提出了抗铁磁铁和多层抗磁性异质结构的主要理论结果。模型用于描述包括纳米层结构中电流和光脉冲引起的现象,包括抗铁磁体。通过布里鲁因散射研究抗铁磁微体和纳米结构的方法,以及抗铁磁性纺纱型和镁质的应用的前景。
摘要:糖尿病在世界范围内构成主要的经济,社会和公共卫生挑战。除了心血管疾病和微血管病外,糖尿病是步道溃疡和下肢截肢的主要原因。随着糖尿病患病率的持续增长,预计糖尿病并发症,早期死亡和残疾的未来负担将增加。糖尿病流行部分是由于目前缺乏临床成像诊断工具,及时监测胰岛素分泌和表达胰岛素的细胞肿块(β(β) - 细胞)以及患者缺乏治疗的依从性引起的,因为某些药物没有耐受或促进治疗。除此之外,缺乏有效的局部治疗方法,无法阻止残疾进展,特别是用于治疗足溃疡。在这种情况下,基于聚合物的纳米结构因其可调的理化特征,丰富的多样性和生物相容性而获得了显着的兴趣。本评论的文章强调了最后的进步,并讨论了将聚合物材料用作β细胞成像的纳米载体的前景,并在血糖和足球溃疡的治疗中使用胰岛素和抗糖尿病药物的非侵入性药物输送。
摘要:铁离子作为传统的高效芬顿反应催化剂,与过氧化氢反应产生羟基自由基,从而在废水中降解有机污染物。然而,在水溶液中,铁离子的化学稳定性较差,因此很难从反应培养基中恢复。我们提出,它们与双嗜嗜性块共聚物的络合可以导致形成具有改善化学和胶体稳定性的纳米催化剂。以不同的摩尔比与双嗜嗜性嵌段共聚物的溶液的溶液(即聚(氧化乙烷)-Block-Poly(丙烯酸)(丙烯酸)形成胶体结构的溶液,添加了铁离子。自发地形成高度单分散胶束,其水动力直径约为25 nm。通过结合多种技术,可以实现核心 - 壳体结构的精确描述。这些结构在3-7的pH范围内化学稳定,并通过萘酚蓝色黑色的降解成功地用作光纤维催化剂。与传统的同质芬顿反应相比,这些胶体结构具有改善的化学和胶体稳定性以及更高的可回收性。关键字:杂交Polyion复合物,胶束,块共聚物,照片芬顿,纳米催化剂,胶体
纳米结构嵌段共聚物薄膜是一种生成复杂周期性图案的精巧工具,其周期从几纳米到几百纳米不等。这种组织良好的纳米结构有望推动下一代纳米制造研究,在生物、光学或微电子功能材料的设计中具有潜在的应用价值。然而,考虑到热力学驱动力倾向于形成最小化嵌段间界面的结构,这一宝贵平台受到二嵌段共聚物架构所能获得的几何特征的限制。因此,丰富嵌段共聚物自组装过程所获得的结构多样性的策略正在获得发展动力,本进展报告通过考虑生成“非天然”形态的新兴策略,回顾了迭代 BCP 自组装所固有的机会。
摘要:以电催化为基础的能量生产、转化和储存,主要借助于氧析出反应 (OER),在碱性水电解槽 (AWE) 和燃料电池中起着至关重要的作用。然而,缺乏高效且成本合理的催化剂材料来克服 OER 缓慢的电化学动力学,是重大障碍之一。在此,我们报道了一种在 H 2 S 存在下使用低温退火快速简便地合成双相硫化镍 (Ni-硫化物) 的气相沉积方法,并证明它是一种有效的 OER 催化剂,可解决电化学动力学缓慢的问题。双相 Ni-硫化物结构由密集堆积的 10 − 50 μ m 微晶组成,具有 40 − 50 个独立的双相层,例如 NiS 和 Ni 7 S 6 。作为电催化剂,双相镍硫化物表现出优异的 OER 活性,在过电位 (η 10 ) 为 0.29 V 时电流密度达到 10 mA/cm 2,并且在 50 小时内表现出优异的电化学稳定性。此外,镍硫化物在碱性条件下表现出相当强的电化学稳定性,并在过程中形成具有 OER 活性的镍氧化物/氢氧化物。采用节能合成方法,制备出独特的双相镍硫化物晶体纳米设计,为高效电催化剂组的可控合成开辟了新途径,以实现长期稳定的电化学催化活性。
肽和蛋白质分别是氨基酸的短链和长链。表达的肽和蛋白质在生物学变异中起着重要而突出的作用,包括控制代谢,调节骨骼代谢,清除自由基,改变睾丸激素水平以及对某些疾病的治疗[1-6]。令人惊讶的是,只有二十个基因编码的氨基酸是自然界中发现的肽的基础,可以将其分为两个主要类别的亲水性和疏水性氨基酸。如方案1所示,ALA,Val,Leu,Ile,Met,Phe,Phe,Tyr和TRP的非极性烃链使它们成为亲脂性,疏水性氨基酸。虽然官能团的存在,例如羟基,酰胺,吡唑,鸟苷,胺,羧酸和硫醇,导致SER,THR,THR,THR,ASN,ASN,GLU,HIS,HIS,LYS,LYS,LYS,LYS,LYS,ASP,ASP,GLU,GLU,GLU,GLU,GLU,GLY,GLY,GLY和CYS的亲水性能(方案2)。这些氨基酸的排列共同导致具有不同亲水性,疏水性或两亲性特性的肽折叠[7]。
摘要 - 本文提出了一种基于密度的拓扑处理方案,用于局部优化由损失的分散材料制成的纳米结构中的电力耗散。我们使用复杂偶联的杆子(CCPR)模型,该模型可以准确地对任何线性材料的分散剂进行建模,而无需将它们限制为特定的材料类别。基于CCPR模型,我们在任意分散介质中引入了对电力耗散的时间域度量。CCPR模型通过辅助微分方程(ADE)合并到时域中的麦克斯韦方程中,我们制定了基于梯度的拓扑优化问题,以优化在宽频谱上的耗散。为了估计目标函数梯度,我们使用伴随字段方法,并将伴随系统的离散化和集成到有限差分时间域(FDTD)框架中。使用拓扑优化球形纳米颗粒的示例,由金和硅制成,在可见的 - 粉状谱光谱范围内具有增强的吸收效率。在这种情况下,给出了与基于密度的方法相关的等离子材料拓扑优化的拓扑挑战的详细分析。我们的方法在分散媒体中提供了有效的宽带优化功率耗散的优化。
对于非结构的磁场方向成为创建高性能多功能纳米复合材料的可行方法,开发一种易于实现并可以诱导远距离统一的纳米结构对齐的方法至关重要。要克服这一挑战,灵感来自低场核磁共振(NMR)技术,一种高度均匀,高的强度和紧凑的磁场纳米结构方向方法,用于使用HALBACH阵列,用于整个时间。通过考虑高度定向的正交形态中的电 - 热和抗菌特性,展示了用于石墨烯聚合物复合材料的应用。研究的石墨烯纳米复合材料中诱导的高水平的各向异性可以通过:1)与其随机定向的对应物相比,记录了多达四十年的高电导率,而后者的浓度则显示出最小的改善,与未效率的聚合物相比最小; 2)超过1200%的热导率提高了3)较低纤维含量的基准水平水平的抗菌表面,并且纳米填充剂的任意方向增加了多功能性。总体而言,新方法及其变化可以为基于石墨烯和其他类型的填充剂的几乎所有主要的纳米复合应用程序定制纳米结构和性能的新视野。
氧化铝(Al 2 O 3)纳米结构通过绿色合成方法在铝箔底物上合成,使用热水处理方法在75°C下持续1、7、15和30分钟。在这项研究中,增长时间有所不同,以研究其对Al 2 O 3纳米结构的大小和密度的影响。使用SEM成像和XRD分析研究了准备准备的Al 2 O 3纳米结构的形态和结构特性,并通过UV-VIS光谱研究了光学特性。扫描电子显微镜(SEM)研究显示,随着80 nm-35 nm范围内的多孔纳米结构粒径随着合成反应时间从1增加到1分钟,多孔纳米结构粒径在80 nm-35 nm范围内降低。X射线衍射(XRD)分析表明,晶体行为随时间的增加而增加。光学性质结果表明,Al 2 O 3纳米结构在紫外线区域显示出相对较宽的吸收光谱。此外,当浸入时间分别从1分钟增加到30分钟时,能量差距(例如)从3.44增加到3.78 eV。这些结果对基于HWT Al 2 O 3纳米结构的Al 2 O 3辅助电子应用有重大影响。