DNA折纸纳米结构(DOS)是用于应用的有前途的工具,包括药物输送,生物传感,检测生物分子和探测染色质子结构。将这些纳米置换剂靶向哺乳动物细胞核可以提供有影响力的方法,用于探测,可视化和控制活细胞中的生物分子过程。我们提出了一种将DOS输送到活细胞核中的方法。我们表明,这些DO不会在细胞培养基或细胞提取物中经历可检测到的结构降解24小时。将DOS输送到人U2OS细胞的核中,我们结合了30纳米的纳米棒,其纳米棒具有针对核因子的抗体,特别是RNA聚合酶II的最大亚基(POL II)。我们发现,DOS在细胞中保持结构完整24小时,包括核内部。我们证明了电穿孔的抗POL II抗体结合的DOS被带回核中,并在细胞核内表现出次延伸的运动。我们的结果建立了与核因子的接口DOS,作为将纳米置换型传递到活细胞核中的有效方法。
图3 - (a)具有等效电路(EC)的BCWN样品的示意图。电阻(b),晶体大小(C)和卢比的值之间的相关性。EC -FILM电容(D)和孔电阻(E)的外部要素与预计的空腔边界长度之间的相关性,由SEM估计。相关性,由SEM估计。
§ 这些作者对本研究的贡献是相同的。 *通讯作者。电子邮件:govorov@phy.ohiou.edu、qbwang2008@sinano.ac.cn、m.hentschel@pi4.uni-stuttgart.de、na.liu@kip.uni-heidelberg.de
硅是一种无处不在的半导体材料,可用于多种应用,是现代电子和能量收集的基础。硅基微电子,如今更确切地说是纳米电子,将在不久的将来达到 10 纳米以下的技术节点。在这些尺寸下,纳米尺寸效应(例如量子限制、掺杂的统计问题、表面状态等)开始发挥作用,降低性能和可靠性,甚至导致晶体管完全失效。这些纳米尺寸效应中的几种已经在精心制造的 Si 纳米结构上进行了研究,在那里获得的研究结果可能对于规避 FET 达到单纳米尺寸时出现的问题至关重要。此外,Si 纳米结构的非常规和新颖方法也令人感兴趣,因为它们可以提供替代的解决方法,有助于防止未来技术节点实施的进一步延迟,目标是在降低功耗的情况下提供更高的性能。除了电子晶体管之外,硅纳米结构(如纳米线和纳米粒子)还为传感器、量子器件、操纵器、执行器、光电子学、生物标记等领域的各种跨学科应用开辟了全新的前景。由于表面体积比高,硅纳米结构主要由表面决定,因此需要新的物理和化学知识来了解其特性。这些知识尚未完成并转移到现代晶体管技术中。在能量收集领域,硅光伏电池通过用异质结取代扩散的 p/n 同质结(充当载流子选择性和高度钝化(无复合)接触)提高了效率。这一概念允许研究一系列新材料作为接触,但需要精确了解它们与硅的界面特性。尽管有报道称至少在实验室规模的太阳能电池上转换效率令人印象深刻,但尚未找到结合了正确的电子和光学特性并与工业批量生产兼容的理想异质接触。进一步的跨学科研究必须找到或开发将合适的 Si 表面钝化与载流子选择性隧穿、长期稳定性以及可靠且经济高效的制造相结合的材料。
摘要 在混合溶剂(水-丁醇和水-环己醇)存在下,利用醋酸铜和硫脲研究了硫化铜(CuS)的结构、成分、电气和发光特性。硫化铜样品的 X 射线衍射 (XRD) 图案显示其六方结构,这是各种混合溶剂的结果。通过使用能量色散 X 射线 (EDX) 和傅里叶变换红外 (FT-IR) 检查,确定了键和原子量百分比。使用扫描电子显微镜 (SEM) 发现水-丁醇和水-环己醇中的硫化铜颗粒形态分别为棒状和片状。使用光带能量曲线和紫外-可见光吸收光谱确定了硫化铜纳米结构的带隙能量。硫空位缺陷是 PL 光谱中出现的紫外和可见光发射带的原因。根据 CV 研究,水-环己醇辅助的硫化铜样品的电化学特性优于水-丁醇辅助的硫化铜样品。根据催化剂的效率,计算了混合溶剂辅助的硫化铜样品中坎戈红 (CR) 染料降解的比例。引言与环境问题、危险废物和有毒水污染物相关的硫化铜受到了广泛关注。有机染料对纺织和其他行业的重要性也非常重要。与传统方法相比,催化方法具有多种优势,包括氧化速度更快和不产生多环产物。由于半导体材料吸收光,带隙能量等于或大于,这可能导致自由基氧化系统表面。但如今,硫化铜因其与能量存储和生物应用(包括抗菌和抗癌治疗)的联系而成为主要研究对象。硫族化合物纳米结构半导体,包括 ZnS、CdS、NiS、CoS 和 CuS,可用于气体传感器、LED、光伏电池、光催化和其他应用。CuS 纳米结构是硫族化合物之一,是 p 型半导体材料,由于其在环境温度下的带隙低至 2.2 eV,因此非常有利于光热、光电应用。这是由于光吸收过程中光子原子分子与光吸收之间的相互作用。具有各种形态的过渡金属氧化物作为光电材料的开发引起了人们的新兴趣,最近发现的一类具有有趣光物理特性的纳米材料的报道正在促进
氧化铝(Al 2 O 3)纳米结构通过绿色合成方法在铝箔底物上合成,使用热水处理方法在75°C下持续1、7、15和30分钟。在这项研究中,增长时间有所不同,以研究其对Al 2 O 3纳米结构的大小和密度的影响。使用SEM成像和XRD分析研究了准备准备的Al 2 O 3纳米结构的形态和结构特性,并通过UV-VIS光谱研究了光学特性。扫描电子显微镜(SEM)研究显示,随着80 nm-35 nm范围内的多孔纳米结构粒径随着合成反应时间从1增加到1分钟,多孔纳米结构粒径在80 nm-35 nm范围内降低。X射线衍射(XRD)分析表明,晶体行为随时间的增加而增加。光学性质结果表明,Al 2 O 3纳米结构在紫外线区域显示出相对较宽的吸收光谱。此外,当浸入时间分别从1分钟增加到30分钟时,能量差距(例如)从3.44增加到3.78 eV。这些结果对基于HWT Al 2 O 3纳米结构的Al 2 O 3辅助电子应用有重大影响。
DNA通常在分子生物学的中心教条下起作用。1即,将DNA分子转录为RNA,然后将其转化为肽,蛋白质和酶。DNA携带的基因组信息可以指导它们组装成错综复杂的结构,并在细胞中执行编程功能,包括细胞内传播,凋亡,迁移,迁移,分裂等。生物分配的形状和结构在其功能中至关重要。因此,对这些组件的几何形状和力学的理解是结构生物学的关键。在DNA纳米技术中,DNA分子被设计为直接组装成复杂的体系结构并执行相似的机制和功能。这是基于Watson - Crick Base Pairing原则,其中A与T和G与C结合,可以用作可编程的自下而上制造策略。这个想法是由Seeman于1982年提出的,他设计了几个DNA链的四向交界处。2从那时起,已经探索了许多结构和复杂的植物。最初,DNA结构不是很好的ned and ned也不是刚性的。以下里程碑是双重
摘要:手性纳米结构允许手性反应的工程;但是,它们的设计通常依赖于经验方法和广泛的数值模拟。尚不清楚是否存在一般策略来增强和最大化亚波长光子结构的内在手性。在这里,我们建议一种显微镜理论,并揭示了共振纳米结构的强性手性反应的起源。我们揭示了反应性螺旋密度对于在共振下实现最大的手性至关重要。我们在平面光子晶体板和元图的示例上演示了我们的一般概念,其中平面镜像对称是通过双层设计打破的。我们的发现为设计具有最大手性的光子结构提供了一般配方,为许多应用铺平了道路,包括手性传感,手性发射器和探测器以及手性量子光学器件。关键字:光学手性,手性元结构,连续体中的界限,圆形二科主义
在核酸纳米技术中,纳米级结构是由DNA或RNA的合理设计的链自组装的(1,2)。核酸的碱基配对特性使它们成为可编程的可编程材料,它可以使结构具有高精度和复杂性的组装,其中包括目前多达数万个核苷酸。DNA和RNA折纸(3,4)是两个强大的,广泛的设计范式,可以指导如何通过精心构成的辅助链或kisterifs sistaple staple strands-spaple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple-staple strander-s in dna s in dna s in of dna procrant-s s of dna staple strands s in dna s in''' RNA折纸中的主题)。两种方法都已用于设计各种2D形状和3D结构(5,6)。大多数当前的3D折纸设计遵循在彼此顶部包装几层螺旋螺旋或螺旋束的方法,和 /或弯曲的螺旋束如最初建议的< / div>
DNA纳米结构是一类自组装纳米材料,在生物医学和纳米技术中具有广泛的潜在应用。使用人直觉或简单算法的简单DNA Polyhedra的发展可以追溯到1980年代。今天,该领域以DNA折纸构建体为主导,以至于丢失了用于设计非原虫纳米结构的原始算法。在这项工作中,我们描述了Arktos:一种用于设计简单DNA Polyhedra而无需使用DNA折纸的算法。arktos设计序列被预测使用模拟退火优化折叠成所需的结构。作为概念证明,我们使用Arktos设计了一个简单的DNA四面体。合成了生成的寡核苷酸序列,并通过聚丙烯酰胺凝胶电泳对实验验证,表明它们折叠成所需的结构。这些结果表明,根据研究界的需求,Arktos可用于设计自定义DNA Polyhedra。