" .@0N4='O=6%*,C&+';*=G362 PQ=36 !AR JQ= " .@0N4='O=0AS*=&%<=<'F(<=36T( %&%'#6;(* " UE4='O=8O2 PQ=S6AQ=V%2 &%<='+B(;=?(+&C='W6<(* " 8X0N4='O=(F6+&W6&C=36Q=T(Q=36T( " .@0N4='O=<'F(<=36Q=T( Y=36T(J " E.0N4='O=F'C9/ Y=&/36=&%<=36 ! AR " 3F,++(;6%D=Y=@5&F';&+6'%='O=?(+&C*Q='W6<(*Q=%6+;6<(*
Mainak Das教授是可持续材料和设计的教育者和研究人员。他是训练有素的农业学家,奶牛生理学家,生物工程师,材料化学家和生物设计师。DAS教授已经过二十五年的广泛设计的未来派,可持续的农业,绿色能源,生理和传感器系统。他和他的科学群体发现,纳米铁黄铁矿种子和根处理会导致多种谷物(小麦,大米),豆类(鹰嘴豆),蔬菜(菠菜,胡萝卜,甜菜根,番茄,白菜,花椰菜,花椰菜),香料(辣椒,fenugreek,onirum says syse sese),蔬菜(菠菜,甜菜根,番茄,白菜,花椰菜)的产量提高。 (苜蓿)和花卉(万寿菊)作物。这是纳米农业的强劲突破,并且具有最小的额外投入,具有可持续增加农业产量的巨大潜力。这一发现是减少合成肥料并减少农业支出的途径。早些时候,Das教授发现,丝绸和头发等天然纤维有可能从废热中发电。
由于其在健康,药品,催化,能量和材料等行业中的多次应用,近年来,纳米技术引起了很多关注。这些纳米颗粒的大量用途范围从1到100 nm。如今,需要可持续的农业。纳米化学物质已被用作杀虫剂,肥料和植物生长的潜在药物。纳米材料现在已经用作控制昆虫,真菌和杂草的替代方法。作为食物包装中的抗菌剂,使用了一系列纳米材料,银纳米颗粒是最受欢迎的纳米颗粒。除了其抗菌特性外,还证明了由碳纳米管AG,TiO2,CEO2,Zn,ZnO,Fe,Cu,Cu,Si和Al组成的纳米颗粒对植物生长具有一定的有害作用。纳米颗粒在食品领域起着重要作用,在产生高质量的营养餐中。关键词:农业,食品工业,应用,纳米颗粒,农药,肥料,抗菌剂
与癌症和心血管疾病相比,传染病获得的科学关注和资金较少。此外,跨学科合作传统上并未被积极用于制造体外设备。但是,该领域的重大技术问题可以通过涉及复杂流体动力学、医学、生物学、纳米技术和聚合物科学的跨学科研究来解决。通过合作,研究人员可以通过针对活性白细胞来改变当前的体外治疗方法,这可以提高治疗效果,同时消除患者血液中的致病元素。需要进行更多的基础和临床评估,以充分理解脓毒症进展的潜在机制和影响,而这些机制和影响大多未知。除了降低脓毒症患者死亡率外,还需要考虑其他优势,例如提高治疗后的生活质量。探索体外治疗是否能减轻影响大约一半败血症幸存者的败血症后综合征是值得的。关键词:败血症;纳米技术;治疗效果;死亡率;高分子科学
关于纳米科学、工程和技术小组委员会 纳米科学、工程和技术 (NSET) 小组委员会是负责协调、规划、实施和审查国家纳米技术计划的跨部门机构。NSET 是国家科学技术委员会 (NSTC) 的一个小组委员会,该委员会是总统协调联邦政府科学、空间和技术政策的主要手段之一。国家纳米技术协调办公室 (NNCO) 为 NSET 小组委员会提供技术和行政支持,并支持小组委员会准备多机构规划、预算和评估文件,包括本报告。有关 NSET 的更多信息,请参阅 http://www.nano.gov/html/about/nsetmembers.html 。有关 NSTC 的更多信息,请参阅 http://www.ostp.gov/nstc/ 。有关 NNI、NSET 和 NNCO 的更多信息,请参阅 http://www.nano.gov 。
特邀演讲嘉宾/小组成员:Debbie G. Senesky(斯坦福大学)、David Gottfried(佐治亚理工学院)、Mihail Roco(NSf)、Mary Tang(斯坦福大学)、Branden Brough(NNCO)、James Moore(NSF EHR 理事会)、Melissa Cowan(英特尔)、Jeffrey Miller(Kavli 基金会)、Victor Zhirnov(半导体研究公司)、Cherie Kagan(宾夕法尼亚大学)、Nadia Carlsten(SandboxAQ)、Jared Ashcroft(微纳米技术教育中心)、Rae Ostman(国家非正式 STEM 教育网络)、Tavarez Holston(佐治亚皮埃蒙特技术学院)、Holly Leddy(杜克大学)、Landon Loeber(美光科技)、Lora Weiss(芯片研发计划办公室)、Barry Johnson(NSF-TIP)、Richard Schneider(谷歌)、Ira Bennett(亚利桑那州立大学)、Vijay Narasimhan(EMD 电子), Raymond Samuel(北卡罗来纳州立农业技术大学)、Philip Hockberger(Waymaker Group)、Christopher Gourlay(澳大利亚国家制造工厂)、Michael Spencer(摩根州立大学)。
本书旨在概述与半导体材料中的纳米科学和纳米技术相关的基本物理概念和设备应用。如书中所示,当固体的尺寸缩小到材料中电子的特征长度(德布罗意波长、相干长度、局域长度等)的大小时,由于量子效应而产生的新物理特性就会显现出来。这些新特性以各种方式表现出来:量子电导振荡、量子霍尔效应、共振隧穿、单电子传输等。它们可以在正确构建的纳米结构中观察到,例如半导体异质结、量子阱、超晶格等,这些在文中详细描述。这些量子结构所表现出的效应不仅从纯科学的角度来看意义重大——过去几十年来它们的发现者获得了数项诺贝尔奖——而且在大多数上一代微电子和光电子设备中也有重要的实际应用。 20 世纪 70 年代初,IBM 的 Esaki、Tsu 和 Chang 开创性地开展工作,为后来在量子阱和超晶格中观察到的许多新效应奠定了基础,从那以后,仅仅过去了 30 年左右。为了观察这些效应,20 世纪 80 年代,许多先进的研究实验室定期采用分子束外延、逐层生长和半导体纳米结构掺杂等先进技术。由于所有这些新发展都发生在相对较短的时间内,因此很难及时将它们纳入大学课程。然而,最近大多数一流大学都更新了课程,并在研究生和本科生阶段开设了以下课程:纳米科学与工程、纳米结构与设备、量子设备和纳米结构等。甚至还开设了纳米科学与工程硕士学位。物理学院、材料科学学院和各种工程学院(电气、材料等)经常开设这些课程。我们认为,在普通本科阶段,缺乏关于纳米科学和纳米技术的综合教科书。一些关于固体物理学的一般教科书开始包括几个部分,在某些情况下,甚至包括一整章,来介绍纳米科学。这些材料经常被添加为这些著名教科书新版本的最后一章,有时并没有真正将其整合到书的其余部分中。然而,对于可以部分用于研究生课程的专业书籍来说,情况要好一些,因为在过去的十五年里,一系列关于纳米科学的优秀教科书