研究#2:多靶标的腺病毒疫苗(Triad5) + N-803(n = 158)•Triad5:靶向靶向肿瘤相关抗原CEA,MUC1和Brachyury的3种疫苗的组合细胞•1 o端点:两次随访的年结肠镜
定向金属沉积 (DMD) 是一种很有前途的金属增材制造技术,其中零件是通过使用沿预定义轨迹移动的激光束融合注入的金属粉末颗粒来制造的。刀具路径通常包括曲线或边缘部分,机器轴需要相应地减速和加速。因此,局部施加的激光能量和粉末密度在沉积过程中会发生变化,导致局部过度沉积和过热。这些偏差还受到刀具路径几何形状和工艺持续时间的影响:先前的沉积可能会在时间和空间上影响相近的刀具路径段,导致局部热量积聚,并形成与使用相同参数沉积的其他段中产生的轮廓和微观结构不同的轮廓和微观结构,这是由于几何形状和温度相关的集水轮廓所致。为了防止这些现象,需要轻量级和可扩展的模型来预测可变刀具路径的工艺行为。在本文中,我们提出了一种基于人工智能的方法来处理 Inconel 718 的工艺复杂性和多种刀具路径变化。考虑到先前定义的刀具路径,使用人工神经网络 (ANN) 来预测沉积高度。通过打印包含多个曲率和几何形状的随机刀具路径,生成了训练数据。基于训练后的模型,可以成功预测整个刀具路径的显著局部几何偏差,并且可以通过相应地调整工艺参数来预测。
传统的安全模型,通常称为基于周长的安全性,是在可以信任网络中受保护边界内的任何用户或设备的假设下操作的[8]。这些模型依靠防火墙,虚拟专用网络(VPN)和非军事区(DMZ)来创建网络周围的安全周边,从而保护其免受外部威胁。但是,这种方法在现代计算环境中越来越不足,在现代计算环境中,固定周长的概念正在迅速消失[14,3]。云计算的兴起,物联网(IoT)设备的扩散以及远程劳动力的扩展具有从根本上改变的网络拓扑,从而创造了更加碎片和复杂的基础架构。因此,基于周边的安全性不再足够,因为威胁可能来自网络内部,设备可以在传统边界之外运行,并且用户可能需要从多个位置和平台访问资源[7,13]。零值网络访问(ZTNA)作为对这些挑战的响应而出现的,为保护现代网络环境提供了一种更灵活,更强大的方法。ZTNA的核心原理很简单而强大:“永远不要相信,始终验证”。与自动信任网络外部设备的传统模型不同,ZTNA假设每个访问请求,无论其起源如何,都必须谨慎对待并经过严格的验证。此模型将重点从保护周边转移到确保个人资源[11,13],以确保每个用户和设备都经过认证,授权和连续监控,然后才能获得访问关键网络资产的访问。
在本文中,我们提出了一种新型的可变形神经关节网络 (DNA-Net),这是一种基于无模板学习的方法,用于从单个 RGB-D 序列进行动态 3D 人体重建。我们提出的 DNA-Net 包括一个神经关节预测网络 (NAP-Net),它能够通过学习预测一组关节骨骼来跟随输入序列中人体的运动,从而表示人体的非刚性运动。此外,DNA-Net 还包括有符号距离场网络 (SDF-Net) 和外观网络 (Color-Net),它们利用强大的神经隐式函数来建模 3D 几何和外观。最后,为了避免像以前的相关工作那样依赖外部光流估计器来获得变形线索,我们提出了一种新的训练损失,即基于易到难几何的损失,这是一种简单的策略,它继承了倒角距离的优点来实现良好的变形引导,同时仍然避免了其对局部不匹配敏感性的限制。DNA-Net 以自监督的方式直接在输入序列上进行端到端训练,以获得输入对象的 3D 重建。DeepDeform 数据集视频上的定量结果表明,DNA-Net 的表现优于相关的最先进方法,并且有足够的差距,定性结果还证明我们的方法可以高保真度和细节重建人体形状。
点云经常包含噪声和异常值,为下游应用带来障碍。在本文中,我们介绍了一种新颖的点云去噪方法。通过利用潜在空间,我们明确地发现噪声成分,从而可以提取干净的潜在代码。这反过来又有助于通过逆变换恢复干净点。我们网络中的一个关键组件是一个新的多层图卷积网络,用于捕获从局部到全局各个尺度的丰富几何结构特征。然后将这些特征集成到可逆神经网络中,该网络双射映射潜在空间,以指导噪声解缠结过程。此外,我们使用可逆单调算子来模拟变换过程,有效地增强了集成几何特征的表示。这种增强使我们的网络能够通过将噪声因素和潜在代码中的内在干净点投影到单独的通道上来精确区分它们。定性和定量评估均表明,我们的方法在各种噪声水平下都优于最先进的方法。源代码可在 https://github.com/yanbiao1/PD-LTS 获得。
无论错配修复状态如何,派姆单抗联合化疗均达到了其主要 PFS 终点,主要疗效结果指标为 PFS(由研究者根据 RECIST 1.1 评估)。在 dMMR 队列中,派姆单抗 + 化疗组的中位 PFS 未达到 (NR)(95% CI:30.7,NR),安慰剂和化疗组的中位 PFS 为 6.5 个月(95% CI:6.4,8.7)(HR 0.30 [95% CI:0.19,0.48];p 值 <0.0001)。在 pMMR 队列中,pembrolizumab 和 chemotx 组的中位 PFS 为 11.1 个月(95% CI:8.7, 13.5),而接受安慰剂和 chemotx 组的中位 PFS 为 8.5 个月(95% CI:7.2, 8.8)(HR 0.60 [95% CI:0.46, 0.78;p 值 <0.0001)。
5实施9 5.1量子熵的生成和分布。。。。。。。。。。。。。。。。。。。。。9 5.1.1 OpenSSL框架。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 5.1.2熵源设置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 5.2产后证书的生成。。。。。。。。。。。。。。。。。。。。。。。。。。12 5.3使用量子安全加密图15 5.4使用后量子键的交易签名。。。。。。。。。。。。。。。。。17 5.5 Quantum签名的链链验证。。。。。。。。。。。。。。。。。。。。19 5.5.1固体验证代码。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 5.5.2基于EVM虚拟机的签名验证支持。。。。。。。。。。。。20 5.5.3 EVM基于预编译的签名验证支持。。。。。。。。。。。。。。。。。。。22 5.5.4在不同溶液之间进行比较,以验证后量子后的定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23
时空时间序列通常是通过放置在不同位置的监视传感器来收集的,这些传感器通常由于各种故障而包含缺失值,例如机械损坏和内部中断。归纳缺失值对于分析时间序列至关重要。恢复特定的数据点时,大多数现有方法都考虑了与该点相关的所有信息,较小的因果关系。在数据收集期间,不可避免地包括一些未知的混杂因素,例如,时间序列中的背景噪声和构造的传感器网络中的非杂货快捷方式边缘。这些混杂因素可以打开后门路径并在输入和输出之间建立非泡沫相关性。过度探索这些非毒性相关性可能会导致过度拟合。在本文中,我们首先从因果的角度重新审视时空时间序列,并展示如何通过前门调整来阻止混杂因素。基于前门调整的结果,我们引入了一种新颖的C技术性-Ware Sp aTiot e Mpo r al图神经网络(CASPER),其中包含一种新型的基于及时的解码器(PBD)和空间 - 可导致的因果发生(SCA)。PBD可以减少混杂因素的影响,而SCA可以发现嵌入之间的因果关系稀疏。理论分析表明,SCA根据梯度值发现因果关系。我们在三个现实世界数据集上评估Casper,实验结果表明,Casper可以胜过基准,并可以有效地发现因果关系。