处理。t这里有越来越庞大的研究项目,其1个目标是模拟大脑区域甚至完整的大脑2,以更好地了解其工作方式。让我们引用3个立场:欧洲的人脑项目(1),大脑4通过疾病研究的综合神经技术映射5(大脑/思想)在日本或大脑倡议(3)中,在6个联合国家中。几种方法是可行的。有7种生化方法(4),它注定了与大脑一样复杂的系统8。已经研究了一种更具生物物理的方法,例如,请参见(5),其中已成功模拟了皮质桶10,但仅限于10 5 11个神经元。然而,人脑含有约10 11个neu-12 rons,而像marmosets(2)这样的小猴子已经具有13 6×10 8神经元(6),而更大的猴子(如猕猴)具有14 6×10 9神经元(6)。15为了模拟如此庞大的网络,减少模型可以制作16个。特别是,神经元没有更多的物理形状,并且仅由具有18个特定电压的网络中的一个点表示。Hodgkin-Huxley方程(7),可以重现物理形状,代表了离子通道的动态,21,但这些耦合方程的复杂性形成了22个混乱的系统(8),使系统非常前端,使该系统非常前端,以模拟23个巨大的网络23。如果忽略了离子通道动态,则24个最简单的电压模型是集成与火的模型(9)。25使用此类模型,超级计算机26可以模拟人尺度的小脑网络,该网络达到约27 68×10 9神经元(10)。28然而,还有另一种观点,这可能使29我们可以使用简化的模型模拟此类大型网络。30的确,人们可以使用更多随机模型来重现31神经元的基本动力学:它们的插图模式。32不仅连接图的随机化,而且33图表上的动力学使模型更接近手头的34个数据,并在一定程度上解释其可变性。35随机的引入不是新的,并且在包括Hodgkin-Huxley(11)和泄漏37
改善神经发育障碍的症状和认知缺陷是当前医学的关键挑战。引起了很多兴趣的神经发育障碍之一是注意力缺陷多动障碍(ADHD),这与影响日常生活和学术成就的不集中和多动症相关,并在执行功能和学习中造成了进一步的困难(Barkley,1997)。尽管儿童中的流行率很高,但最近的工作强调了多动症一直持续到成年(Sayal,Prasad,Daley,Ford,&Coghill,2017年)。非侵入性脑刺激技术已越来越有吸引力,作为一种有前途的工具,在健康和临床种群中显示出神经调节和行为影响,几乎没有不良反应(Reed&Cohen Kadosh,2018)。在这个问题中,Breitling等人的一项研究。(2020)研究了两种类型的经颅直流刺激(TDC)对右下额回的影响对ADHD儿童和青少年的工作记忆过程和表现的影响。
摘要:生物神经元类型和网络的分类对全面了解人类大脑的组织和功能提出了挑战。在本文中,我们使用监督机器学习解决方案,基于神经元通信的属性,开发了一种新的生物神经元形态和电类型及其网络的客观分类模型。与现有的神经信息学方法相比,这种方法具有优势,因为从脉冲序列中获得的与神经元之间的相互信息或延迟相关的数据比传统的形态数据更丰富。我们从蓝脑计划现实模型中构建了两个名为 Neurpy 和 Neurgen 的各种神经元回路的开放式计算平台。然后,我们研究了如何对皮质神经元回路进行网络断层扫描,以对神经元进行形态、拓扑和电分类。我们提取了 10,000 个网络拓扑组合的模拟数据,其中包含五层、25 个形态类型(m 型)细胞和 14 个电类型(e 型)细胞。我们将数据应用于几种不同的分类器(包括支持向量机 (SVM)、决策树、随机森林和人工神经网络)。我们实现了高达 70% 的准确率,使用网络断层扫描推断生物网络结构的准确率高达 65%。使用神经元通信数据,可以通过级联机器学习方法实现生物网络的客观分类。在使用的技术中,SVM 方法似乎表现更好。我们的研究不仅有助于现有的分类工作,还为未来使用脑机接口设定了路线图,即在体内客观分类神经元作为大脑结构的传感机制。
摘要 注意力缺陷多动障碍 (ADHD) 是一种常见的神经发育障碍,除了注意力不集中、活动过度或冲动之外,还使儿童难以处理面部情绪,从而与同龄人互动。在这里,我们通过锁相值 (PLV) 方法分析了患有这种疾病的儿童的神经网络。具体来说,我们确定了 22 名健康男孩和 22 名患有 ADHD 的男孩的 62 个 EEG 通道之间的相位同步水平,同时记录了观察愤怒、快乐、中性和悲伤面部情绪。我们基于伽马子带构建了神经网络,根据以前的研究,该子带对情绪刺激的反应最高。我们发现 ADHD 组的额叶和枕叶的功能连接显著 ( P 值 \ 0.01) 高于健康组。这些脑叶的功能连接越多,表明这些脑区神经元之间的相位同步性越高,这说明 ADHD 组大脑情绪处理中心存在一些问题。ADHD 组这些脑叶的最短路径长度也显著高于健康组(P 值 \ 0.01)。这一结果表明 ADHD 神经元网络的枕叶和额叶(分别负责大脑中的视觉和情绪处理)中信息传递和分离的效率较低。我们希望我们的方法能够帮助利用网络科学方法进一步深入了解 ADHD。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2024年9月8日发布。 https://doi.org/10.1101/2024.09.09.06.611614 doi:Biorxiv Preprint
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。
摘要:DNA-胶原蛋白复合物的不同方式主要用于基因递送研究。但是,很少有研究研究这些复合物作为生物活性支架的潜力。此外,尚无研究表征由自组装DNA宏结构和胶原蛋白的相互作用形成的DNA-胶原蛋白复合物。为了进行这项研究,我们在此报告了由序列特异性,自组装的DNA宏结构和胶原蛋白I的相互作用形成的新型生物活性支架的制造。DNA和胶原的变化导致高度相互交织的纤维骨架与不同的纤维厚度的高度相互交织的摩尔比。形成的支架是生物相容性的,并作为细胞生长和增殖的软基质表示。在DNA/胶原蛋白支架上培养的细胞促进了转铁蛋白的细胞摄取增强,并且进一步研究了DNA/胶原支架诱导神经元细胞分化的潜力。与对照组相比,DNA/胶原支架促进了具有广泛神经突的前体细胞的神经元分化。这些新型的,自组装的DNA/胶原支架可以作为开发各种生物活性支架的平台,并在神经科学,药物递送,组织工程和体外细胞培养中具有潜在的应用。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
嘌呤能系统包括P1和P2受体,这些受体被ATP及其代谢产物激活。它们在成人神经元和神经胶质细胞中表达,在脑功能上至关重要,包括神经调节和神经元信号传导。作为P1和P2受体在整个胚胎发生和发育中都表达,纯净信号传导在周围和中枢神经系统的发展中也具有重要作用。在这篇综述中,我们介绍了嘌呤能受体的表达模式和活性及其在神经系统的胚胎和产后发育期间的信号传导方式的表达模式和活性。特别是,我们回顾了嘌呤能信号传导的参与,在大脑发育的所有关键步骤中,即在神经干细胞增殖,神经元分化和迁移以及星形胶质生成和少突胶质发生中。然后,我们回顾了显示ATP和腺苷信号通路在形成周围神经肌肉连接以及中央GABA能和谷氨酸盐突触中的关键作用的数据。最后,我们研究了开发过程中嘌呤能系统放松管制的后果,并讨论了在成人阶段靶向其在ATP和ATP和腺苷途径重新激活的疾病中的治疗潜力。
在过去的几十年中,已经做出了明显的努力,以了解大脑中神经机制为心理和认知过程的基础。本文认为,理解人类认知本质的前途有希望的方法是从关注神经基础上的普遍图片中缩小。它考虑了神经元如何与其他类型的细胞(例如免疫)协同起作用,以弥补整个人类有机体的生物学自我组织和适应性行为。我们专门将免疫细胞加工作为关键参与者,以补充神经元加工,以在不断变化的环境中实现成功的自组织和适应人体的适应。我们概述了关于“基础认知”的理论工作和经验证据,挑战了只有大脑中的神经元细胞具有“学习”或“认知”的独家能力的观念。对细胞而不是神经的关注,大脑加工强调了一种观念,即环境中对浮动的敏感反应需要精心制作的生物生物体多个组织水平上的多个细胞和身体系统的编排。因此,认知可以看作是分布在一系列复杂的蜂窝(例如,神经元,免疫等)和网络系统中的动态信息处理的多尺度网络,在整个身体上工作,而不仅仅是在大脑中。最终,本文旨在基于根本性的说法,即不应仅将认知单独用于一个系统,即大脑中的神经系统,无论后者多么复杂。