摘要:生物神经元类型和网络的分类对全面了解人类大脑的组织和功能提出了挑战。在本文中,我们使用监督机器学习解决方案,基于神经元通信的属性,开发了一种新的生物神经元形态和电类型及其网络的客观分类模型。与现有的神经信息学方法相比,这种方法具有优势,因为从脉冲序列中获得的与神经元之间的相互信息或延迟相关的数据比传统的形态数据更丰富。我们从蓝脑计划现实模型中构建了两个名为 Neurpy 和 Neurgen 的各种神经元回路的开放式计算平台。然后,我们研究了如何对皮质神经元回路进行网络断层扫描,以对神经元进行形态、拓扑和电分类。我们提取了 10,000 个网络拓扑组合的模拟数据,其中包含五层、25 个形态类型(m 型)细胞和 14 个电类型(e 型)细胞。我们将数据应用于几种不同的分类器(包括支持向量机 (SVM)、决策树、随机森林和人工神经网络)。我们实现了高达 70% 的准确率,使用网络断层扫描推断生物网络结构的准确率高达 65%。使用神经元通信数据,可以通过级联机器学习方法实现生物网络的客观分类。在使用的技术中,SVM 方法似乎表现更好。我们的研究不仅有助于现有的分类工作,还为未来使用脑机接口设定了路线图,即在体内客观分类神经元作为大脑结构的传感机制。
主要关键词