摘要超导量子计算机所基于的量子位(Qubits)的能量尺度与具有GHz频率的光子相对应。Gigahertz结构域中光子的能量太低,无法通过嘈杂的室温环境传输,在这些环境中,信号会在热噪声中丢失。光学光子具有更高的能量,并且可以使用高度有效的单光子检测器来检测信号。从微波炉转移到光学频率是量子设备的潜在启用技术。但是,在这样的设备中,光泵可以是热噪声的来源,从而降低了实现。输入微波状态与输出光学状态的相似性。为了研究这种效果的幅度,我们基于基于硝酸锂低语图库模式谐振器的电透射器的亚kelvin热行为进行了建模。我们发现,连续泵有最佳的功率水平,而泵的脉冲操作增加了转换的确定性。
抽象的光学KERR效应,其中输入光强度线性地改变了折射率,它使光学孤子,超充值谱和频率梳子的产生,在芯片设备,纤维通信和量子操作中起着至关重要的作用。尤其是Terahertz Kerr效应,在未来的高速计算,人工智能和基于云的技术中具有引人入胜的前景,由于功率密度和微弱的Kerr响应,遇到了一个巨大的挑战。在这里,我们演示了一个巨大的Terahertz频率KERR非线性,由刺激的声子极性子介导。在巨型Kerr非线性的影响下,功率依赖性的折射率变化将导致微腔的频移,这是通过测量芯片尺度岩石型niobate fabry-pérotmicrobocabity的谐振模式实验证明的。归因于刺激的声子极性子的存在,从频移中提取的非线性系数比可见光和红外光的数量级大,理论上也由非线性黄色方程式证明。这项工作为许多具有Terahertz细纹的基于物理,化学和生物系统的富有和富有成果的Terahertz Kerr效应开放了途径。
最近在光学和光子学方面取得了突破,导致了非重点设备和材料的显着进步。研究人员已经证明了实现光学隔离的各种方法,包括磁光隔离器,非逆地相位变速器和声学系统。研究表明,可以使用IIII-V-niobate放大器和激光器(De Beeck等,2021)以及氮化硅平台(Yan等,2020)来实现综合波导隔离器。这些设备可实现有效的光学通信和传感应用。此外,研究人员还探索了在硅光子系统中使用微量的,这可以导致紧凑和集成的光子溶液(Shu等,2022; Shen等,2020)。其他研究的重点是开发针对平面波导隔离器的非重粒子材料和设计(Srinivasan&Stadler,2018)。此外,研究人员还研究了在不使用磁光材料的情况下实现光学分离的各种方法。这些方法包括合成磁力和储层工程(Fang等,2017),电动驱动的Acousto-Optics(Kittlaus等,2021)以及声子介导的光子自动镇分布(Sohn等,2021)。总体而言,这些非重点设备和材料中的这些进展对用于光学通信,传感和其他应用的紧凑,集成光子系统的开发具有重要意义。最近的一项研究证明了用于基于芯片的激光雷达技术的非重点脉冲路由器的发展[1]。这项创新基于光学隔离器和循环器的先前研究,这些创新已被证明是通过参数放大[2]和KERR效应的固有非交流性[3]来实现的。其他研究探索了微孔子来创建隔离器和循环器[4],以及在对称微腔中的可重构对称性激光[5]。研究人员还研究了用于频率梳子产生和低功率启动的高Q氮微孔子[6,7]。已经报道了磷化磷化物非线性光子学的综合凝固膜的发展,以及基于触觉的Kerr非线性综合光子学[8,9]。还研究了高Q硅碳化物微孔子中的光学KERR非线性,以及硅碳化物纳米光子学中的光学参数振荡[10,11]。进一步的研究集中于具有高第二谐波产生效率的定期粘性薄膜硅锂微孔谐振器[12]。单片硅锂光子电路已为Kerr频率梳子的产生和调制开发[13]。研究还研究了由于动态互惠性而引起的非线性光学隔离器的局限性[14],以及非线性谐振器中反传播光的对称破坏[15]。已报道了非线性微孔子中自发性手性的实验证明,以及基于氮化硅和非线性光学硅Hydex的新型CMOS兼容平台[16,17]。研究还探索了稀薄的氮化硅同心微孔子中的分散工程和频率梳子的产生[18]。据报道,探测材料吸收和集成光子材料的光学非线性,以及解决硅微孔谐振器设备的热挑战[19,20]。最后,已经证明了镜子对称的片上频率循环,以及由硅芯片上带光子跃迁引起的电动驱动的非转换的非逆向性[21,22]。使用微孔调制器的光学隔离也已经探索[23]。注意:我在试图维护原始含义和上下文的同时解释了文本。但是,为了清楚起见,可能已经省略或改写了一些次要细节。研究人员刘和团队开发了一种大规模生产高质量氮化硅光子电路的方法,以最低的损失率以最低的损失率实现了出色的性能。在他们最近在《自然传播》中的出版物中详细介绍了这一突破。
来自光学微孔子的耗散kerr孤子(通常称为唯一微型群)已开发用于广泛的应用,包括精度测量,光学频率合成以及超稳的微波和毫米波的产生,都是在芯片上。Microcombs的一个重要目标是自引用,这需要八度带宽来检测和稳定梳子载体信封偏移频率。此外,通常使用频划分来实现梳子间距的检测和锁定。薄膜锂Niobate光子平台,其低损失,强大的二阶和第三阶非线性以及较大的Pockels效应非常适合这些任务。然而,在这个平台上证明,跨八度的孤子巨型镜头很具有挑战性,这在很大程度上是由于强烈的拉曼效应阻碍了可靠的孤子设备的可靠制造。在这里,我们在薄膜锂锂锂上完全连接并跨八度的孤子微角色。通过适当控制微孔自由光谱范围和耗散光谱,我们表明抑制孤子的拉曼效应被抑制,并用近乎无限的产量制造了孤子设备。我们的工作提供了一种明确的方法,可以在强烈的拉曼活性材料上生成孤子。此外,它可以预测单一整合,自我引用的频率标准与已建立的技术,例如薄膜锂锂锂锂。
语音晶体(PNC)表现出通常在天然材料中发现的声学特性,这导致了新的设备设计以进行声波复杂的操作。在本文中,我们报告了通过语音晶体中的线缺陷来构建微米尺度的语音波导,以实现片上紧密限制的引导,表面声波的弯曲,弯曲和分裂(锯)。PNC由定期镍支柱的平方晶格制成。它表现出一个完整的带隙,该带隙禁止在PNC内部锯的传播,但允许线缺陷内的传播。通过基于电镀的微生物制作过程,在128°Y型niobate底物上实现了波导。PNC晶格常数,支柱直径和支柱高度分别为10 𝜇𝑚,7.5 𝜇𝑚和3.2 𝜇𝑚。互插的换能器是单层整合在同一底物上的,用于195 MHz左右的SAW激发。通过使用扫描光学杂作干涉仪测量平面外表面位移场,可以通过测量平面外表面位移场来实验观察到语音波导中表面波的引导,弯曲和分裂。高频紧密限制的语音波 - 证明了精确的局部操作锯的可行性,这对于新兴的边境应用(例如基于声子的量子信息处理)至关重要。
本文介绍了一种由压电微机械超声换能器 (pMUT) 阵列实现的空中触觉接口设备,该设备首次在 15 mm 距离处实现了前所未有的 2900 Pa 的高传输压力。该结构基于溅射铌酸钾钠 (K,Na)NbO 3 (KNN) 薄膜,具有高压电系数 (𝑒𝑒 31 ~ 8-10 C/m 2 )。由 15×15 双电极圆形隔膜组成的原型 KNN pMUT 阵列的谐振频率约为 92.4 kHz。测试结果显示,在 15 mm 外的自然焦点处,仅在 12 V pp 激励下,传输灵敏度就达到每伏 120.8 Pa/cm 2,这至少是之前报道的类似频率的 AlN pMUT 的 3 倍。此外,还实现了在人手掌上产生类似风的感觉的即时非接触式触觉刺激。因此,这项研究为人机界面应用(如消费电子产品和 AR/VR 系统)开发出一种具有高声输出压力的新型 pMUT 阵列提供了启示。关键词
光子综合电路的领域近年来已经取得了重大进展,对设备的需求不断增长,这些设备提供了高性能可重构性。由于常规可调方向耦合器(TDC)无法在调谐反射率时保持固定相,因此使用Mach-Zhhnder干涉仪(MZIS)作为用于构建大型电路的反射率调谐的主要构件。但是,由于需要完美平衡方向耦合器实现0-1的反射率,因此MZIS容易出现制造错误,这阻碍了它们的可扩展性。在这项研究中,我们在薄膜锂锂平台中基于耦合恒定调整引入了TDC的设计,并提出了优化的设计。我们优化的TDC设计实现了任意的反射率调整,同时确保在各种操作波长范围内保持一致的阶段。此外,与MZIS和常规TDC相比,它表现出的弯曲部分比MZIS较少,并且固有地对波导几何形状和耦合长度的制造误差具有固有的弹性。我们的工作有助于开发高性能光子综合电路,对各个领域的影响,包括光学通信系统和量子信息处理。
+962-79-2362470 教育背景 博士学位。物理学,2002 美国阿肯色大学,阿肯色州费耶特维尔。题目:周期性极化铌酸锂(LiNbO 3 )中参数过程的研究。 导师:Yuji Ding 硕士学位。物理学,1997 年 美国宾夕法尼亚州威尔克斯-巴里威尔克斯大学。题目:金属氧化物半导体场效应晶体管反型层中的高场量子传输。 导师:Vijay Arora。学士学位。物理学,1989 年 雅尔穆克大学,伊尔比德-约旦 工作经历 基础科学系主任(2022 年至今) 德国约旦大学基础科学与人文学院,马达巴,约旦 教学与研究经历 教授(2022 年至今),德国约旦大学,马达巴,约旦。 副教授(2016-2022 年),德国约旦大学,马达巴,约旦。助理教授(2013-2016),德国约旦大学,马达巴,约旦。助理教授(2008-2013),黎巴嫩美国大学,比布鲁斯,黎巴嫩。研究助理教授(2002-2008),阿肯色大学,费耶特维尔,美国研究助理教授(2002-2007),阿肯色大学,费耶特维尔,美国研究助理(1998-2002),阿肯色大学,费耶特维尔,美国物理学讲师(1998-1998),匹兹堡大学约翰斯敦分校,约翰斯敦,美国宾夕法尼亚州。科学教师(1990-1996),伊斯兰科学学院,安曼,约旦。荣誉
随着对电子设备成本更低、性能更好、尺寸更小、可持续性更强的需求,微机电系统 (MEMS) 换能器成为受益于小型化的主要下一代技术候选之一 [1-3]。压电 MEMS 谐振器具有高品质因数和大机电耦合度,是射频 (RF) 系统中很有前途的产品 [4-8]。压电 MEMS 谐振器的主要材料是氮化铝 (AlN)、压电陶瓷 (PZT)、氧化锌 (ZnO) 和铌酸锂 (LN) [9-13]。近年来,掺杂 AlN 薄膜,尤其是氮化铝钪 (AlScN),因其能提高 d 33 和 d 31 压电系数而备受研究 [14]。基于AlN和AlScN薄膜的压电MEMS谐振器凭借单片集成度高、性能优越等特点,受到越来越多的关注。MEMS谐振器种类繁多,如表面声波(SAW)谐振器[15,16]、薄膜体声波谐振器(FBAR)[17-19]。但SAW器件与CMOS工艺不兼容,FBAR的频率主要取决于压电层厚度,因此很难在一个芯片上实现多个工作频率或宽频率可调性。另一方面,基于AlN和AlScN的轮廓模式谐振器(CMR)与CMOS工艺兼容[20-24]。同时,工作频率和谐振频率与CMOS工艺兼容,而基于CMR的器件的工作频率和谐振频率与CMOS工艺不兼容。
基于光子集成电路的传感平台已显示出巨大的希望,但是它们需要集成的光学读数技术中的相应进步。在这里,我们提出了一个片上光谱仪,该光谱仪利用了综合的薄膜Niobate调制器来产生频率 - 敏捷的电频率梳子,以询问芯片尺度温度和加速传感器。chir梳过程允许超速射频驱动电压,该电压比文献中最低的少数数量较少七个数量级,并且是使用芯片尺度,微控制器驱动的直接数字合成器生成的。片上梳状光谱仪能够同时询问片上温度传感器和芯片外部,微型制动的光力加速度计,其尖端敏感性分别为5 µk·Hz -1/2和≈130µm·S -2·s -2·hz-hz -1/2。该平台与广泛的现有光子集成电路技术兼容,在该技术中,其频率敏捷性和超低射频功率要求的组合预计有望在量子科学和光学计算等领域中应用。光子集成电路(PIC)技术具有低成本,高精度的野外传播感应的巨大潜力。但是,解锁这些功能不仅需要传感器,而且还需要光学读数的整合。[2,3]这些类型的测量通常需要在MHz水平上狭窄的梳齿间距,并在GHz水平上梳子跨度,从而导致敏感且高动态范围读数。芯片尺度的光学频率梳子非常适合这些光子读数需求,因为它们具有高速,多路复用测量的能力而无需任何运动部件,[1]因此允许将光子传感器转移到数字输出。尤其是,电频率梳子不仅可以集成,而且还可以具有足够的频率敏捷性来实现探测原子过渡所需的高分辨率以及基于光学(和光力学的)腔传感器,其中需要对腔运动进行测量以读取传感器。
