我们的目的是预测接种 2019 冠状病毒病 (COVID-19) 疫苗后 18 F-FDG PET/CT 上是否存在疫苗诱导的高代谢淋巴结 (v-HLN),并确定它们与淋巴细胞计数的关系。方法:在这项回顾性单中心研究中,我们纳入了 2021 年 3 月初至 4 月下旬期间接种基于信使 RNA 或病毒载体的 COVID-19 疫苗后接受 18 F-FDG PET/CT 成像的连续患者。收集人口统计学、临床参数和绝对淋巴细胞计数 (ALC),并通过逻辑回归研究它们与引流区中 v-HLN 存在的关系。结果:总共有 260 名患者符合条件,其中包括 209 名(80%)女性和 145 名(56%)乳腺癌患者。中位年龄为 50 岁(范围为 23 – 96 岁)。 233 人(90%)接种了信使 RNA 疫苗。90 人(35%)患有 v-HLN,SUV 最大值中位数为 3.7(范围:2.0 – 26.3),74 人(44%)出现淋巴细胞减少,ALC 中位数为 1.4 3 10 9 /L(范围:0.3 – 18.3 3 10 9 /L)。多变量分析显示,年龄≤50岁(OR=2.2;95% CI=1.0~4.5)、无淋巴细胞减少(OR=2.2;95% CI=1.1~4.3)及最后一次疫苗注射与18F-FDG PET/CT显像时间间隔小于30天(OR=2.6;95% CI=1.3~5.6)为v-HLN的独立因素。在乳腺癌患者中,无淋巴细胞减少是与v-HLN显著相关的唯一独立因素(OR=2.9;95% CI=1.2~7.4)。结论:接种 COVID-19 疫苗后 ALC 正常的患者在 18 F-FDG PET/CT 上出现 v-HLN 的可能性更大,这两者都可能与疫苗接种后更强的免疫反应有关。
为了解决无线传感器网络因资源有限、开放部署、无人值守等特点导致节点定位过程中存在安全隐患的问题,本文结合目前WSN节点提出一种主流的定位算法,通过降低网络定位中的误差,使无线传感器网络定位技术发挥到实用效益,实现基于节点资源和有限容量的WSN发射源定位。将一些定位技术应用到发射源定位中,取得了一些有意义的结果。针对无线传感器网络中主要节点定位算法存在的问题,深入研究定位技术的功耗、定位精度等问题,降低定位误差。实验表明,在节点发送不同状态时,保持节点数150不变,通信半径不变,环境输出不变,网络中的骨干节点数可以改变,两种算法经过多次仿真实验,都可以看到定位方案受到锚节点部分影响的定位结果曲线。
1微电器设备的关键实验室集成技术,中国科学院微型电子学研究所,中国北京100029; zhangdonglin20@mails.ucas.ac.cn(d.z.); zhaoyulin@ime.ac.cn(y.z。); hanzhongze20@mails.ucas.ac.cn(Z.H.); qhu@mail.ustc.edu.cn(Q.H.); xuanzhi@mail.ustc.edu.cn(X.L.); hommyoun@163.com(H.Y.); chengjh0903@foxmail.com(J.C。); dingqingting@ime.ac.cn(q.d.); lvhangbing@ime.ac.cn(H.L.)2中国科学学院微电子学院,中国北京100049,中国3张实验室,中国311121; pengb806@nenu.edu.cn(B.P. ); hanyk@zhejianglab.com(y.h。 ); jianghaijun@zhejianglab.com(H.J.) 4中国科学技术大学微电子学院,中国Hefei 230026 *通信:yangjianguo@ime.ac.ac.cn;电话。 : +86-10-82995-5852中国科学学院微电子学院,中国北京100049,中国3张实验室,中国311121; pengb806@nenu.edu.cn(B.P.); hanyk@zhejianglab.com(y.h。); jianghaijun@zhejianglab.com(H.J.)4中国科学技术大学微电子学院,中国Hefei 230026 *通信:yangjianguo@ime.ac.ac.cn;电话。 : +86-10-82995-5854中国科学技术大学微电子学院,中国Hefei 230026 *通信:yangjianguo@ime.ac.ac.cn;电话。: +86-10-82995-585
安全是WSN必不可少的关注部分。在真实的现状时代,可靠的机制和路由方案正面临着不同的相遇,而且也很棘手。问题在识别不信任的节点和从源到目的地遵循的路线以及WSN中电池状态的约束时发现了问题。没有有效的技术来避免辩护性节点攻击。当前的研究文章通过采用区块链技术就可以解决其他持久缺点,例如使用区块链的安全AODV来解决其他持续的缺点。通过执行现有系统的仿真和实验验证,本研究文章的结果表示成功识别和发生恶意节点,端到端延迟,数据包输送比率以及通过PUT性能评估。还使用NS2区块链算法模拟了区块链数据库中节点的注册和AODV协议中黑洞攻击的行为。
摘要。针对节能和最佳WSN的最佳部署问题,本文建立了最佳覆盖模型。同时,提出了一种基于粒子群理论和量子的粒子群优化的节能部署算法。准物理策略,即准实体和准库仑力,在量子粒子群优化算法的位置进化方程中引入,这可以合理地调节传感器节点之间的距离。此外,该算法可以以低区域重复速率获得快速优化。此外,对WSN节点的传感半径进行动态调整,以最大程度地减少节点的能量消耗。模拟结果表明,与传统的粒子群和量子性粒子群群优化方案相比,所提出的算法在网络覆盖率和收敛速度方面具有更好的性能。同时,该算法在减少WSN中的节点能量消耗方面具有一定的优势。
1 DEIMOS Space SLU,Tres Cantos – 马德里,西班牙 stefania.tonetti@deimos-space.com, stefania.cornara@deimos-space.com, gonzalo.vicario@deimos-space.com 2 Thales Alenia Space France - stephane.pierotti@thalesaleniaspace.com, judith.cote@thalesaleniaspace.com 3 加泰罗尼亚理工大学电子工程系 – UPC BarcelonaTech,巴塞罗那,西班牙 carles.araguz@upc.edu, eduard.alarcon@upc.edu, elisenda.bou@gmail.com 4 Unidad María de Maeztu CommSensLab-UPC 加泰罗尼亚理工大学 – UPC BarcelonaTech 和 IEEC (CTE-UPC),巴塞罗那,西班牙 camps@tsc.upc.edu, david.llaveria@upc.edu, estefany.m.lancheros@gmail.com, joan.adria@tsc.upc.edu 5 泰雷兹阿莱尼亚宇航公司西班牙分公司 - pedro.r@thalesaleniaspace.com 6 华沙理工大学,波兰华沙 - msochacki@meil.pw.edu.pl, jnark@meil.pw.edu.pl 7 莫斯科斯科尔科技学院,俄罗斯莫斯科 - a.golkar@skoltech.ru 8 曾就职于莫斯科斯科尔科技学院,现就职于西班牙巴塞罗那近太空实验室 ignasi@nearspacelabs.com, rema@nearspacelabs.com * 通讯作者