引言 1 一般背景 2 2.1 气味的定义 2 2.2 气味浓度与特征的区别 2 2.3 工业校准和标准化要求 2 恶臭气体标准的要求和实现 3 3.1 需要气味监测的工业过程 3 3.2 有气味物质的优先气体标准 5 3.2.1 二元标准 6 3.2.2 多组分标准 7 潜在客观嗅觉测量量表的研究 8 4.1 气味的分类 8 4.1.1 参考气味和“气味空间” 9 4.2 嗅觉分析(人体气味小组) 9 4.2.1 嗅觉分析的背景 9 4.2.2 气味小组测量 10 4.2.3 嗅觉计 12 4.2.4 气相色谱仪 (GC) 嗅探 13 4.2.5 气味值 13 4.3 气味感知理论 13 4.3.1 气味检测的生物模型 14 4.3.2 定量结构-活性关系 (QSARS) 14 4.3.3 分子振动-气味关系 15 4.4 非弹性电子隧道光谱 17 4.4.1 平面隧道光谱 17 4.4.2 扫描隧道显微镜技术 17 4.4.3 隧道光谱的模型计算 18 4.4.4 红外电子隧道光谱与气味之间的关系 20 4.4.5 红外吸收 23 有效的现场采样和测量方法 27 5.1 环境气味检测的要求27 5.2 取样方法 27 5.2.1 罐取样 27 5.2.2 吸附材料取样 28 5.3 测量方法 30 5.3.1 气相色谱法 (GC) 30 5.3.2 火焰离子化检测气相色谱法 (FlD) 31 5.3.3 硫化学发光法 32 5.3.4 气相色谱-质谱法 (GC-MS) 33 5.3.5 手性固定相气相色谱法 35 5.3.6 建议的环境气味分析方法 35 人工嗅觉计 (电子鼻) 的标准化和校准 37 6.1 电子鼻测量的背景 37 6.2 欧洲人工嗅觉感知网络 (NOSE) 38 6.3 标准化要求 38 结论40 7.1 气味标准 40
当 G 蛋白被气味受体激活时,α 亚基中的 GDP 被鸟苷三磷酸 (GTf) 取代。此过程导致 α 亚基与 β 和 γ 亚基分离。释放的 α 亚基现在与酶 -腺苷酸环化酶 (AC) 结合并激活该酶。酶活化过程将 GTP 水解为 GDP。然后 α 亚基与 β 和 γ 亚基重新结合,使 G 蛋白恢复到静止状态。活化的酶将腺苷三磷酸 (ATP) 环化为环-3'-5'-腺苷单磷酸 (cAMP),后者充当细胞内激素(通常称为“第二信使”)。细胞内 cAMP 浓度急剧增加,从而激活(打开)细胞膜上的门控离子蛋白通道。打开的通道允许细胞外无机离子(Ca++)流入燃料电池,导致其极化。细胞因氯离子流而去极化,这种全细胞电流是气味接收信号的来源,该信号通过轴突传送到嗅球[7]。我
Vaidya和A.-c。 Romain,(2017年)使用电子鼻和化学分析仪的MSW气味定量:预测能力和健壮模型开发的相对探索,ISOCS/IEEE国际嗅觉和电子鼻子(ISOEN),蒙特利尔,QC,QC,加拿大,加拿大,1-3,1-3,
Physical state : Solid Appearance : No data available Colour : Metallic Black Odour : Odourless Odour threshold : No data available pH : No data available pH solution : No data available Relative evaporation rate (butylacetate=1) : No data available Melting point / Freezing point : Freezing point: Not applicable Boiling point : No data available Flash point : No data available Auto-ignition temperature : No data available Flammability : No data available Vapour pressure : No data available Relative密度:无数据可用密度:无数据可溶解度:无数据可用日志功能:无数据可用的粘度,运动学:不适用爆炸性属性:无数据可用爆炸性限制:不适用的最小点火能量:无数据可用的脂肪溶解度:无数据可用数据可用数据可用
iii 使用扩散模型评估空气和气味排放的影响。对于气味排放,报告应包括对工厂运营中可能排放的恶臭气体或挥发性有机化合物 (VOC) 的影响的评估。 iv 控制空气污染的措施,确保符合新加坡污染控制实践守则标准 (即 SS593:2013)、EPMA 1999 及其法规中的排放标准和要求。 v 工厂应采取措施控制和防止空气排放和气味滋扰,包括参考其他国家类似项目的最佳可用技术。 vi 管理计划,确保空气和气味排放控制措施的有效性,并管理意外情况,例如当工厂设施无法处理空气和气味排放时。 vii 监测方案——监测的空气/气味杂质、监测设备/进行的测试的类型(例如美国环境保护署(EPA)批准或指定的参考和等效方法)以及监测频率。
状态:液态:浅黄色气味:几乎看不见的气味蒸发率:氧化可忽略:无氧化(通过EC标准)在水中的溶解度:不溶于溶解也可溶于:大多数有机溶剂。粘度:粘性运动学粘度:22粘度测试方法:40C(CST)沸点/范围°C时的运动粘度:> 150闪点°C:> 150相对密度:0.864
物理状态:纯色:白色。外观:薄片。分子质量:118.09 g/mol气味:无味。气味阈值:不可用的熔点:120°C冰点:不适用的沸点:不可用的易燃性:无易燃。下爆炸极限:不适用的上部爆炸极限:不适用闪点:> 100°C自动点击温度:不适用分解温度:> 165°C pH:9.5 - 10.5
• 对可用的咖啡烘焙、气味和颗粒物减排技术进行调查 • 整理和分析具有代表性的 NZSCA 成员咖啡烘焙能耗数据 • 确定咖啡烘焙过程、质量平衡和热平衡 • 审查当前的咖啡烘焙过程是否符合当地领土当局的空气质量许可要求 • 审查咖啡烘焙技术 • 审查可用于满足气味和颗粒物减排(污染物排放)要求的技术 • 总结可用选项的主要优点和局限性 • 已使用标准对每个机会进行评分。有关此问题的更多信息,请参阅附录(第 31 页)
它指的是鱼的污染,导致颜色、质地、味道、气味、外观等发生不良变化。鱼的腐败也被称为“腐烂”。鱼腐败可能是由于酶降解、细菌降解、化学分解和机械损伤引起的。我们可以通过观察颜色变化、鱼腥味、皮肤和鳞片的粘性、肉的硬度、脊骨的变色等来表征腐烂的鱼。