肺癌仍然是全球癌症相关死亡率的主要原因,诸如SMARCB1,MEOX2和GLI-1之类的基因在其恶性肿瘤中起着显着作用。尽管已知参与,但这些基因对肺癌进展的特定分子贡献,尤其是它们对EGFR和GLI-1的表观遗传修饰对Oncogenes序列的影响,以及它们对基于EGFR-TKI的疗法的反应,尚未得到充分探索。我们的研究揭示了MEOX2和GLI-1是GLI-1和EGFR遗传模式的关键分子调节剂,进而在转录和表观遗传上影响肺癌中的EGFR基因表达。此外,发现MEOX2显着促进体内肺肿瘤进展并降低EGFR-TKI疗法的有效性。相反,检测到MSWI/SNF衍生的亚基SMARCB1通过在GLI-1和EGFR遗传序列中诱导表观遗传修饰,从而抑制肿瘤生长并增强体内研究中的肿瘤治疗反应。此外,我们的结果表明,BRD9可能有助于激活肺癌Oncogenes GLI-1和EGFR。这样的发现表明,Smarcb1和Meox2可以作为人类肺癌疗法中重要的预后生物标志物和靶基因,为在肺部恶性疾病领域开发更有效和选择性治疗策略提供了新的机会。
摘要:粘膜黑色素瘤(MM)是一种罕见且侵略性的临床癌症,主要发生在头部,颈部和肛门生殖器区域。尽管遗传学最近的进步和革命治疗的发展,例如免疫疗法,但MM的预后仍然很差。犬MM与人类对应物共享几种临床,组织学和遗传特征,提供了相关的自发和免疫能力模型,以破译遗传基础并探索人类MM的治疗选择。我们对32个犬MM样品进行了整合基因组和转录组分析,这使我们能够鉴定出微环境和结构变体(SV)含量不同的两个分子亚组。与微环境和T细胞反应相关的基因的过表达与具有较低的结构变体含量的肿瘤有关,而与色素沉着相关的途径和癌基因(如TERT)的过表达与高SV负担相关。详细介绍了SV,尤其是那些具有局灶性扩增的SV,在四个犬MM细胞系上进行了全基因组测序。我们表明,焦点放大表征了靶向癌基因的复杂染色体重排,例如MDM2或CDK4,以及犬30犬30上的一个经常放大的区域,其中包含TRPM7,GABPB1,USP8和SPPL2A的基因,是MMMM的候选。我们表明这些基因的拷贝数与它们的表达水平显着相关。最后,我们证明了TRPM7,GABPB1和SPPL2A基因在细胞增殖中起作用。因此,这些可能被视为人类MM的新候选癌基因。我们的发现表明存在可能受益于专用疗法的两个MM分子亚组,例如免疫检查点抑制剂或靶向疗法。这些结果说明了自发MM中狗模型对解密遗传机制的相关性,并有可能筛选人类中罕见和侵略性癌症有效的靶向疗法。。
抽象一些具有大小,形状,电荷和两亲性体系结构类似于短阳离子A-螺旋肽的大小,形状,电荷和两亲性体系结构的 已显示出靶向和稳定DNA G四链体(G4S)的靶向和稳定,并在体外稳定了G4调节基因在人类细胞中的表达。 扩大可以充当有效的DNA G4粘合剂并下调包含G4形成序列的基因的金属结构库,我们调查了两个对映体对对映体的相互作用的相互作用C-Myc,C-Kit和K-Ras Oncogenes。 在所有研究的G4形成序列中,金属纤维表现出比双链DNA的优先结合,并在包含G4形成序列的模板链上诱导了DNA聚合酶的诱导停滞。 此外,如RT-QPCR分析和蛋白质印迹揭示了研究的Myallohelices在HCT116人类癌细胞中mRNA和蛋白水平上抑制了C-MYC和K-RAS基因在mRNA和蛋白水平上的表达。已显示出靶向和稳定DNA G四链体(G4S)的靶向和稳定,并在体外稳定了G4调节基因在人类细胞中的表达。 扩大可以充当有效的DNA G4粘合剂并下调包含G4形成序列的基因的金属结构库,我们调查了两个对映体对对映体的相互作用的相互作用C-Myc,C-Kit和K-Ras Oncogenes。 在所有研究的G4形成序列中,金属纤维表现出比双链DNA的优先结合,并在包含G4形成序列的模板链上诱导了DNA聚合酶的诱导停滞。 此外,如RT-QPCR分析和蛋白质印迹揭示了研究的Myallohelices在HCT116人类癌细胞中mRNA和蛋白水平上抑制了C-MYC和K-RAS基因在mRNA和蛋白水平上的表达。已显示出靶向和稳定DNA G四链体(G4S)的靶向和稳定,并在体外稳定了G4调节基因在人类细胞中的表达。扩大可以充当有效的DNA G4粘合剂并下调包含G4形成序列的基因的金属结构库,我们调查了两个对映体对对映体的相互作用的相互作用C-Myc,C-Kit和K-Ras Oncogenes。在所有研究的G4形成序列中,金属纤维表现出比双链DNA的优先结合,并在包含G4形成序列的模板链上诱导了DNA聚合酶的诱导停滞。此外,如RT-QPCR分析和蛋白质印迹揭示了研究的Myallohelices在HCT116人类癌细胞中mRNA和蛋白水平上抑制了C-MYC和K-RAS基因在mRNA和蛋白水平上的表达。
摘要 CRISPR-Cas9 系统以其高效率和特异性彻底改变了基因编辑,为靶向癌症治疗提供了新途径。本综述重点介绍了 CRISPR-Cas9 用于抑制致癌基因、恢复肿瘤抑制基因和通过编辑关键基因序列增强免疫治疗的机制。本综述还探讨了 CRISPR-Cas9 如何靶向 DNA 修复途径,例如同源定向修复 (HDR) 和非同源末端连接 (NHEJ),强调成功治疗癌症所需的精确度。尽管体外结果令人鼓舞且正在进行临床试验,但脱靶效应和免疫反应等挑战仍然存在。本综述还重点介绍了 CRISPR 技术的进展、临床前和临床研究、联合疗法以及癌症治疗的未来方向。关键词:CRISPR-Cas9、癌症治疗、基因编辑、DNA 修复途径、致癌基因、肿瘤抑制基因、免疫治疗、临床试验
This protocol describes the surgical procedure for co-electroporation of two plasmids targeting neu- ral stem cells (NSCs) in the lateral ventricle of mouse postnatal day 2 (P2) pups: a nonintegrating plasmid encoding for the piggyBase transposase and Cas9 and an integrating piggyBac vector car- rying the oncogenes, CRISPR guide RNAs and a TDTOMATO荧光报告蛋白通过倒末端重复序列(ITRS)倾斜(图1)。在电穿孔后,瞬时CAS9表达会导致肿瘤抑制基因失活,而PiggyBase介导的PIG-GYBAC货物的整合确保了靶向NSC及其后代中的癌基因和流动性记者的稳定表达。的整合是由PiggyBase转疗的酶促活性介导的,该转移的酶活性通过切割和粘贴机制在受体细胞基因组中的TTAA位点识别并将其与它们的内容一起插入。NSC的靶向是通过最小的人GFAP(HGFAPMIN)启动子序列1-3驾驶PiggyBase/cas9的驱动表达来实现的。
结直肠癌(CRC)在中国癌症中的发病率最高和第三高死亡率(1,2),大约15%的转移性CRC患者患有BRAF基因突变和预后不良(3,4)。Braf Oncogenes通过激活有丝分裂原活化蛋白激酶(MAPK)途径(5)来促进肿瘤发生,而V600E突变是最常见的BRAF突变。V600E突变患者的死亡风险是野生型BRAF患者的两倍,因为前者中的大多数人都对化疗和靶向药物疗法具有抗性。尽管一些小样本研究表明,与贝伐单抗相结合的三药化疗(FOLFOXIRI)可能会在某种程度上改善这些患者的预后,但生存益处似乎有限(6,7)。因此,对BRAF V600E突变的新型药物和治疗方案的探索构成了紧急的临床优先事项。
在某些情况下,突变致癌基因的小分子抑制剂的鉴定导致了显著的肿瘤反应。尽管取得了这些成功,但许多癌症并不含有可用药的致癌基因突变,单一药物疗法很少导致肿瘤完全消退。为了系统地鉴定出其表达对于癌细胞系亚群的增殖和/或存活必不可少的基因,我们和其他人开发了基因组规模的方法,在数百种癌细胞系中进行功能丧失[RNA干扰(RNAi)和CRISPR-Cas9]筛选,以鉴定出特定环境下的必需基因(1-7)。这些努力已鉴定出WRN是微卫星不稳定癌症中的合成致死靶点,PRMT5是MTAP缺失肿瘤中的必需基因,以及透明细胞卵巢癌中的选择性EGLN1依赖性(8-12)。这些研究大多侧重于鉴定特定环境下细胞适应性所需的单个基因。然而,其他研究已经利用这些癌细胞系的基因依赖性模式来揭示基因
材料和方法:在这项实验研究中,将MDA-MB-231和4T1 TNBC细胞与骨髓衍生的MSC共同培养,并收集了TA-MSC条件培养基(CM)。TA-MSC CM处理的TNBC细胞进行迁移和侵袭测定。上皮 - 间质转变(EMT)标记。使用锥虫蓝色排除技术测量细胞增殖,而细胞周期分布和凋亡通过流式细胞仪评估。通过皮下在BALB/c小鼠的右侧与4T1细胞对MSC的地下共注射MSC对TA-MSC对肿瘤体积,存活率和肺转移的影响(每组n = 5)。使用慢病毒颗粒作为救援实验进行肿瘤内白细胞介素12(IL-12)免疫疗法。分析了TA-MSCS RNA-SEQ数据集(PRJEB27694),以检测从欧洲核苷酸档案数据库下载的转移相关的肿瘤基因。用于验证RNA-seq数据分析,使用RT-PCR在TA-MSC,TNBC细胞和肿瘤组织中评估候选癌基因的表达水平。
简单的摘要:在过去的二十年中,随着对癌症编码的蛋白质的引入,几种肿瘤的治疗景观发生了深刻的变化。致癌基因在人类癌症中起着至关重要的作用,当特定药物抑制其编码的蛋白质时,可以恢复或停止肿瘤过程。是慢性髓样白血病的一个例子,其中所有病理特征都可以由单一癌基因归因于。由于理性设计的抑制剂,大多数患有这种疾病的患者现在具有正常的预期寿命。然而,该药物仅阻止蛋白质,癌基因继续不受影响,而停药仅是一小部分患者的选择。随着基因组编辑核酸酶的出现,尤其是CRISPR/CAS9系统,现在破坏癌基因的可能性是可行的。已经开发了一种新型的治疗工具,在癌症治疗中具有难以想象的限制。最近的研究支持CRISPR/CAS9系统可能是慢性髓样白血病的定义治疗选择。这项工作回顾了慢性髓样白血病的生物学,CRISPR系统的出现及其作为该疾病的特定工具的能力。
摘要:多种恶性肿瘤中均存在关键致癌基因的过度激活和过表达。近年来,超级增强子(SE)对致癌基因的异常激活机制引起了广泛关注。癌细胞中发生的一系列基因组变化(插入、缺失、易位和重排)可能产生新的SE,导致SE驱动的致癌基因过表达。SE由典型的增强子密集地负载介导复合物、转录因子和染色质调节剂组成,驱动与细胞身份和疾病相关的致癌基因的过表达。细胞周期蛋白依赖性蛋白激酶7(CDK7)和溴结构域蛋白4(BRD4)是与SE介导的转录相关的关键介导复合物。临床试验表明,针对SE的新兴小分子抑制剂(CDK7和BRD4抑制剂)对癌症治疗具有显著效果。越来越多的证据表明SE及其相关复合物在各种癌症的发展中起着关键作用。本文讨论了SE的组成、功能和调控及其对致癌转录的贡献。此外,还讨论了针对SE的创新治疗方法、其优缺点以及临床应用中的问题。研究发现,以SE为靶点可用于常规治疗并为癌症患者开辟更多治疗途径。