摘要 — 寻找合适的停车位是一个具有挑战性的问题,尤其是在大城市。随着汽车保有量的增加,停车位变得越来越稀缺。对这些停车位的需求不断增长,再加上有限的停车位,导致了供需失衡。缺乏足够的停车管理系统导致许多街道上到处都是非法停放的汽车。需要一个可扩展、可靠、高效的停车管理系统来解决这个问题。基于深度学习的计算机视觉技术已经成为解决此类问题的有希望的解决方案。这些技术对图像识别和处理领域产生了巨大的影响。它们还为车辆跟踪领域的进一步应用提供了巨大的潜力。因此,它们可以用来检测停车位。
技术,Karnataka 2 BE Scholar,CSE,部门,Shri Dharmasthala Manjunatheshwara技术学院,卡纳塔克邦摘要 - 该研究提出了一种基于手势的交互系统,旨在使用OpenCV和MediaPipe实时控制。此系统使用手势来提供一种直观且不接触的方式来与计算机进行交互,从而为与传统输入设备(如鼠标或键盘等传统输入设备)挣扎的人相互访问。使用单个网络摄像头,该系统连续捕获并监视手动移动。这些运动是通过模式识别算法处理的,以准确识别特定的手势,每个手势都与各种计算机操作相对应,包括鼠标运动,咔嗒声和滚动。该系统是针对用户友好性和效率进行设计的,使用户可以在无人接触的情况下轻松浏览其计算机屏幕。研究的结果强调了使用手势来实现基本计算机控制任务的实用性和有效性,在日常和专业计算方案中提出了一种有希望的无提交互方法。索引术语 - 手势识别,OpenCV,MediaPipe,小鼠控制,人类计算机相互作用。
摘要。DIV>运动检测是计算机视觉中分析视频活动的重要过程。本研究实现了一个简单的系统,可以使用Python和OpenCV库在视频文件中检测运动。该系统通过比较视频中的连续帧来检测变化并标记体验运动的区域。实现在各种示例视频上显示出令人满意的结果。本研究提供了一种易于实现的解决方案,可用于视频分析和基于计算机的监视等应用程序。DIV>关键字:运动检测,视频,Python,OpenCV,摘要视频分析。运动检测是计算机对视频活动进行分析活动的愿景的重要过程。这项研究实现了一个简单的系统,可以使用Python和OpenCV库来检测视频文件中的移动。该系统通过比较视频中的连续帧来检测变化并标记正在体验动作的区域来起作用。实现在各种示例视频上显示出令人满意的结果。本研究提供了易于实施的解决方案,可用于视频分析和基于计算机的监视等应用程序。关键字:动作,视频,python,openCV,视频分析
随着技术的快速发展,电子产品每天都在越来越小。现在有无线设备。这项研究提出了一种机制,该机制可能会导致一些将来会塑造HCI(人为计算机相互作用)的小工具。这个想法是使用手势识别来创建虚拟鼠标。目标是用简单的摄像头替换传统或普通的鼠标设备,以控制鼠标光标的功能。仅使用相机,虚拟鼠标可作为用户和计算机之间的管道起作用。它促进了鼠标功能,并允许用户与机器连接,而无需任何物理或机械设备。使用网络摄像头或内置摄像头拿着彩色帽子或彩色粘纸纸,使用这种手势识别技术很有可能记录和跟踪手的指尖。系统将跟踪手的颜色和移动,并与之同时移动光标。通常,我们使用鼠标,键盘或其他交互设备,这些设备主要与计算机计算机紧凑。无线设备还需要电源和连接技术,但是在本文中,用户的裸手是使用网络摄像头的唯一输入选项。因此,这是控制鼠标光标的一种非常互动的方法。使用基于计算机愿景的库OpenCV以Python编程语言实现此系统。该系统有可能替换典型的鼠标和机器的遥控器。唯一的障碍是照明条件。这就是为什么系统仍然不足以替换传统鼠标的原因,因为大多数计算机都在较差的照明条件下使用。
背景:实时对象检测在各种计算机视觉应用中起关键作用,从监视到自动驾驶汽车。目标:在此项目中,我们提出了一个使用OpenCV和SSD Mobilenet进行实时对象检测的Python脚本,使用网络摄像头feed作为输入。方法:该脚本利用预训练的模型和类名称文件实时识别和标记对象。统计分析:关键步骤包括设置用于对象检测和非最大抑制的阈值,初始化网络摄像头输入,加载类名称,配置SSD Mobilenet模型,执行实时检测并显示结果。调查结果:该脚本提供了一个无缝接口,供用户有效地检测其周围对象。应用和改进:该项目展示了深度学习技术在现实世界中的实际应用,从而促进了计算机视觉技术的进步。
Chennai,印度600073摘要 - 许多组织的重要组成部分,包括企业,活动和教育机构,是出勤管理。 用于记录出席的传统技术,包括手动登录表或滑动卡,效率低下,劳动力密集,容易出错。 在这项工作中,我们使用计算机视觉库OpenCV提出了一种创新的方式进行出勤管理。 我们的技术会自动识别并跟踪人们的面孔,以便使用图像处理技术和面部识别算法跟踪出勤率。 我们的出勤管理解决方案通过将OpenCV与可靠的识别模型合并来实现极好的准确性和可靠性。 在这项工作中给出了建议的系统的概述,特别注意图像处理,面部检测和面部识别。 关键字:面部识别,电子表格,LBPH,OPENCV,相机,出勤率。 I. 在许多领域中引入的介绍至关重要的是教育,商业和安全。 用于记录出席的传统技术,包括电子滑动卡或基于纸的登录表格,通常是不可靠且可以操纵的。 计算机视觉技术的开发提出了一种自动管理出勤过程的可行方式。 在这项研究中,我们提供了一种准确有效的出勤管理系统,该系统利用OpenCV(一个强大的开源计算机视觉库)。 II。 概述图像处理构成了我们出勤管理系统的基础[5]。 iii。 1。Chennai,印度600073摘要 - 许多组织的重要组成部分,包括企业,活动和教育机构,是出勤管理。用于记录出席的传统技术,包括手动登录表或滑动卡,效率低下,劳动力密集,容易出错。在这项工作中,我们使用计算机视觉库OpenCV提出了一种创新的方式进行出勤管理。我们的技术会自动识别并跟踪人们的面孔,以便使用图像处理技术和面部识别算法跟踪出勤率。我们的出勤管理解决方案通过将OpenCV与可靠的识别模型合并来实现极好的准确性和可靠性。在这项工作中给出了建议的系统的概述,特别注意图像处理,面部检测和面部识别。关键字:面部识别,电子表格,LBPH,OPENCV,相机,出勤率。I.在许多领域中引入的介绍至关重要的是教育,商业和安全。用于记录出席的传统技术,包括电子滑动卡或基于纸的登录表格,通常是不可靠且可以操纵的。计算机视觉技术的开发提出了一种自动管理出勤过程的可行方式。在这项研究中,我们提供了一种准确有效的出勤管理系统,该系统利用OpenCV(一个强大的开源计算机视觉库)。II。 概述图像处理构成了我们出勤管理系统的基础[5]。 iii。 1。II。概述图像处理构成了我们出勤管理系统的基础[5]。iii。1。我们预处理图像以提高其质量并提取相关特征以进行后续分析。技术(例如调整大小,降噪和对比度调整)诸如确保面部检测算法的最佳性能。 另外,[7]图像预处理有助于减轻照明条件和背景混乱中的变化,从而提高了面部检测和识别的准确性。 图像处理我们出勤管理解决方案的核心是图像处理。 为了提高输入照片的质量并确定相关信息以进行进一步分析,我们会进行预处理。 [2]面部识别算法旨在通过利用包括对比度修改,降低降噪和缩放(包括对比度修改,降低和缩放)来尽可能地工作。 [3]此外,图片预处理通过减少背景混乱和照明中的波动来增强面部识别和识别的精度。 面部检测我们的出勤管理系统使用面部检测作为在输入照片中识别人员的关键步骤。 我们使用尖端的面部检测方法(包括基于深度学习的探测器或HAAR级联反应)从预处理照片中找到并提取面部区域。 [7]为了识别与人脸相匹配的模式,这些算法检查图片数据和输出边界框或像素坐标是否有其他处理。 [8]强大的出勤监视需要准确的面部识别,尤其是在姿态,情绪和闭塞的情况下。 2。技术(例如调整大小,降噪和对比度调整)诸如确保面部检测算法的最佳性能。另外,[7]图像预处理有助于减轻照明条件和背景混乱中的变化,从而提高了面部检测和识别的准确性。图像处理我们出勤管理解决方案的核心是图像处理。为了提高输入照片的质量并确定相关信息以进行进一步分析,我们会进行预处理。[2]面部识别算法旨在通过利用包括对比度修改,降低降噪和缩放(包括对比度修改,降低和缩放)来尽可能地工作。[3]此外,图片预处理通过减少背景混乱和照明中的波动来增强面部识别和识别的精度。面部检测我们的出勤管理系统使用面部检测作为在输入照片中识别人员的关键步骤。我们使用尖端的面部检测方法(包括基于深度学习的探测器或HAAR级联反应)从预处理照片中找到并提取面部区域。[7]为了识别与人脸相匹配的模式,这些算法检查图片数据和输出边界框或像素坐标是否有其他处理。[8]强大的出勤监视需要准确的面部识别,尤其是在姿态,情绪和闭塞的情况下。2。摘要模型我们的出勤管理系统的摘要模型包括面部识别过程,该过程与所观察到的面孔与公认的人相匹配,以记录出勤率[5]。为了进行面部识别,我们使用了诸如特征法,渔夫或局部二元模式直方图(LBPH)等复杂算法[1]。使用带注释的面部照片的培训数据集,这些算法获得了歧视性特征,它们可能会用来识别或分类在看不见的图像中。[7]摘要模型中包含了特征提取,相似性评估和决策的基本机制,这些机制正确地识别了面孔和跟踪出席率。
摘要 - 如今,计算不限于台式机和笔记本电脑,它已经找到了移动设备,例如棕榈台面,甚至手机。但是,在过去的50年左右的情况下,信息小工具没有变化,Qwerty控制台消失了。虚拟键盘使用传感器技术允许用户像键盘一样在任何地方操作。本文使用图像处理概念开发了计算机键盘查看应用程序。虚拟键盘必须可访问且功能正常。将使用相机恢复键盘图像。文本将由摄像机捕获,因为我们在屏幕上使用手势在工作空间控制台上的手势。相机在打字时将捕获手指的运动。因此,这提供了一个视觉键盘。本文还引入了基于视觉的鼠标,该鼠标将手动将链接作为输入。鼠标将用我们的手指看我们的鼠标。在构建将充当虚拟键盘的系统时,将在键盘的相机图像的帮助下下载。键入。相机将在输入时捕获手指的运动
摘要 — 手势识别对于人机交互 (HCI) 非常重要。与整个人体相比,人的手非常小,连接复杂,因此识别人手并非易事。通过使用手势识别,可以检测到手的点/坐标,从而实现许多不可能的事情。我们的工作表明了这样一个发现,即虚拟画家。在我们的项目中,主要目标是在显示器屏幕上显示我们在网络摄像头前空中书写的文字。这是通过计算机的普通网络摄像头识别人手来实现的,并使用 MediaPipe Python 库检测手势点。使用检测到的手势点存储张开的手指数。当食指和中指张开时,表示处于选择模式,而当只有食指张开时,则处于绘图模式。在选择模式下,我们可以从屏幕上显示的颜色列表中选择要绘制的颜色。绘图模式是将现场在摄像机前书写的内容绘制在监视器屏幕上。这种实现方式可以应用在许多需要立即执行或解释的地方。