迫切需要过渡到整个更可持续的社会,尤其是化学工业。[1,2],尽管进行了深入的研究,但我们目前对催化剂的激活,稳定性能,衰老,失活和再生的过程不可能应对这一挑战。[3-14]随后,无论我们在合成和表征方法方面的进步如何,新催化剂的经验发现仍然是常态。这是一个非常低效,耗时且总体上不满意的努力。关于最佳催化剂设计的量身定制设计的主张只有在建立了对工作催化剂的结构活动相关性的原子性理解后才能实现。这要求我们首先了解反应物的化学潜力如何影响催化剂的状态,以及这些气相和温度诱导的修饰如何反馈或在催化过程中进化。为了更多地阐明催化剂和反应性物种之间的相互作用,并遵循导致催化活性,实地和实时观察到高空间分辨率的活性催化剂的出现的过程。[15,16]
由于电解质很难进入纳米多孔还原石墨烯(RGO)电极的纳米构固定空间,因此实现了这些设备的最佳电化学性能是一个挑战。在这项工作中,在电压控制的纳米孔RGO电极的电化学激活过程中研究了界面州现象的动力学,该电化学激活在人体能力和电化学障碍方面导致电化学性能增强。原位/操作表征技术用于揭示激活过程中引入的不可逆材料变化的动力学,包括纳米孔内的离子差异和水的构成,以及含氧组的还原和RGO Interlayer距离的减少。此外,操作技术用于揭示RGO电极的复杂极化依赖性动态响应的起源。研究表明,石墨烯基平面中剩余官能团的可逆质子化/去质子化和阳离子电吸附/解吸过程控制纳米孔RGO电极的假能性能。这项工作为纳米多孔RGO电极的电化学循环过程中发生的表面化学,离子实现和脱染过程之间的复杂相互作用带来了新的了解,从而为设计基于Nanoporor rgo的高强度电极设计了新的见解。
在充电/放电过程中锂电池电极的结构和电子演化的研究对于了解LI的存储/释放机制至关重要,并优化了这些材料,以实现高性能和循环性。在过去的20年中,在过去的20年中,已经开发出了几种原位和现代技术,例如X射线衍射XRD,1-11 X射线吸收光谱XAS XAS,12-15和Mössbauer,Mössbauer,16 Raman,ir和NMR 17,18 Specopies已开发出来。对电池材料的原位评估,即在封闭的电化学电池内观察,带来在线信息,并消除了通过环境气氛操纵高反应性粉末的风险。它允许研究复杂的反应机制,并证明由于电极s内的结构和电子过渡而导致的各种化学系统中的电压 - 组合物非常令人满意。可以在标准实验室衍射仪和同步加速器源设备中进行原位XRD研究,该设施可提供比常规X射线管所输送的光子量高几个数量级的X射线光束。到此为止,已经设计了几种用于转移或传输几何形状的电化学细胞。在标准X射线衍射仪中,高质量位置敏感探测器的最新开发使得在实验室中更容易使用此类技术。使用带状结构计算和数据模拟的最新方法在允许对电化学锂插入/提取过程中的化学键进行精确分析方面非常成功。在要研究的材料方面非常普遍,最近在伸展的X射线吸收膜结构Exafs和X射线吸收接近边缘结构Xanes Xanes Xanes模式中,最近在延伸的X射线吸收膜结构中广泛执行了原位XAS的结构变化和电子传递现象。例如,尽管信号的EXAFS部分提供了有关其自身吸收原子选择的近距离环境的直接结构信息,但可以将光谱的XANES部分大致看作是给定原子的空电子状态的图片,并允许在静脉内和反流中监测这些水平的收费过程。19此外,同步设施中弯曲的单晶的开发和使用分散X射线吸收结构以及单色QuickXAS快速旋转的可能性为研究的新方法铺平了道路,以研究对电池材料的研究。使用非常短的收购时间的可能性,通常是XRD和XAS几秒钟的顺序,确实允许我们投资 -
基于抽象的层激光添加剂制造技术在制造具有复杂形状的金属复合材料方面具有巨大的多功能性和灵活性。有兴趣产生具有高级特征的新的多物质材料的兴趣超过了可用的方法,这些方法可提供对散装材料形成的见解,进而可以实现过程和材料优化。虽然一些高级操作研究可以在已建立的金属层中进行高度局部观察,但大部分材料中固有的固有热处理的影响通常超出了操作的表征。在这里,我们通过高级Operando Neutron成像接近该政权,该成像利用中子光束线上定制设计的激光粉末融合设备。Operando偏振对比中子成像实验在建筑物厘米的标本中进行,具有不同的粉末预混合组成为316L和CUCRZR。这些全场上分辨的测量结果揭示了在整个样品和加工时间中铁磁相和温度的定量演化。
摘要:环境压力X射线光电子光谱(APXPS)与同时的电气测量结合,并由密度功能理论计算支持,以研究Operando动力学中基于基于气体的Tungsten二硫化物(WS 2)的感应机制。这种方法允许在现实的工作条件下的表面电势变化与WS 2传感活动层的电阻率之间的直接相关性。着眼于第2和NH 3的有毒气体,我们同时证明了氧化或还原剂之间的明显化学相互作用与WS 2活性层之间的明显化学相互作用及其对传感器响应的影响。The experimental setup mimics standard electrical measurements on chemiresistors, exposing the sample to dry air and introducing the target gas analyte at different concentrations.该方法适用于NH 3浓度100、230和760和14 ppm的NO 2浓度,为未来的APXPS研究建立了基准,用于在操作系统条件下进行快速获取时间和快速获取时间和1:1的电反应和光谱数据之间的相关性。我们的发现有助于更深入地了解2D过渡金属二分法中的传感机制,为针对各种工业应用和具有低能消耗的无线平台优化化学传感器铺平了道路。关键字:操作光谱,带弯曲,表面电势,密度功能理论,气体传感
摘要:我们引入了一个灵活的显微镜全纤维 - 光学拉曼探针,该探针可以嵌入设备中以启用Operando的原位光谱。便捷的探针由嵌套的反无核核纤维与集成的高折射率钛酸稀盐Microlens组成。泵激光785 nm激发和近红外收集是独立表征的,表明了全宽度最大最大1.1μm的激发点。由于这比有效的收集区小得多,因此对收集的拉曼散射的影响最大。我们的表征方案提供了适合使用纤维类型和微球的各种组合来测试这些纤维探针功效的合适方案。在表面增强的拉曼光谱样品和铜电池电极上进行的拉曼测量结果证明了纤维探针的生存能力,可以替代散装视神经拉曼显微镜,从而与10个目标相当地收集,从而为在诸如岩石电池监控等应用中的Operando Raman研究铺平了道路。关键字:空心核纤维,拉曼,Microlens,原位,纤维探针,光子纳米夹■简介
先前的研究表明,锂离子电池中容量褪色的主要原因是石墨电极处发生缓慢的侧面反应,这不可逆地消耗了锂库存。18-24这些副反应是由于石墨SEI的稳定性有限或保护效率而发生的;因此,对石墨SEI的研究是电池研究中最重要的领域之一。25 - 29同样,对锂金属阳极上SEI形成的研究对于高能锂金属阳极电池的发展至关重要,以及改善对锂镀层反应的理解,这些反应严重限制了石墨基锂离子电池的寿命。30-33然而,当前对这些复杂反应的理解受到限制,对于石墨和金属阳极的SEI反应机理和气体形成特性的差异知之甚少。在这项工作中,我们结合了操作数压力测量和在线电化学质谱法,以研究在含有石墨和金属电极的电池中进化和消耗的气体。通过比较锂半细胞中石墨的气体形成特性,在具有LifePo 4计数器电极的细胞中,我们证明了锂
硅(Si)由于其高容量而被认为是下一代阳极的有前途的阳极材料。然而,循环过程中大量的膨胀和主动颗粒粉碎会迅速恶化电池性能。SI阳极粒径和粒子粉碎之间的关系以及循环过程中Si颗粒的结构演变尚不清楚。在这项研究中,对未包装和还原的氧化石墨烯(RGO)包裹的SI纳米颗粒(SI@RGO)的形态变化进行了定量的,时间分辨的“ Operando”小角度X射线散射(SAXS)研究。结果提供了SI粒径变化以及非辅助RGO在减轻SI体积膨胀和粉碎中的作用的清晰图片。此外,这项研究证明了与其他方法相比,在电化学环境中“操作”萨克斯的优势。
摘要:界面结构和化学演变是电池和其他电化学系统安全性、能量密度和寿命的基础。在锂电沉积过程中,可能会出现局部非平衡条件,从而促进异质锂形态的形成,但直接研究这些条件具有挑战性,尤其是在纳米尺度上。在这里,我们绘制了锂电沉积过程中活性铜/电解质界面的化学微环境,并展示了一种新方法——原位冷冻低温电子显微镜 (cryo-EM),用于锁定纽扣电池中出现的结构。我们发现局部离子耗竭与锂晶须有关,但与平面锂无关,我们假设耗竭源于根部生长的晶须在生长界面消耗离子,同时限制离子通过局部电解质的传输。这可能导致危险的锂形态传播,即使在浓电解质中也是如此,因为离子耗竭有利于树枝状晶体的生长。因此,原位冷冻冷冻电镜可以揭示活性电化学界面处的局部微环境,从而能够直接研究能源设备运行过程中出现的特定地点的非平衡条件。
1300小时LR7,IEB摘要:电化学阻抗光谱(EIS)是一种表征电化学系统的强大非侵入性工具。 应用于锂离子电池,EIS被证明是其最先进的(SOH)的信息指标。 但是,EIS受线性和平稳性的限制限制,而锂离子电池固有地以非线性和非平稳的方式行为。 关于线性,电极上的电压是电流通过电极的非线性函数。 线性是通过在操作点上应用零均值电流激发来实现的,因此非线性函数在该范围内是准线性的。 关于时间变化,充满电和完全放电的细胞的阻抗是不同的,对于原始和老化的细胞,或在室温和冰冻环境中保持的细胞相同。 对于锂离子电池,这意味着在特定的电荷(SOC)和温度下,应以稳定状态进行EIS实验。 因此,阻抗取决于工作点(温度和SOC),线性和平稳性的限制非常限制。 最近,我们开发了Operando EIS,以揭示无法满足线性和平稳性的测量结果。 该技术允许在一个随时间变化的轨迹上测量电化学系统的阻抗,例如,在充电或排放锂离子电池时。1300小时LR7,IEB摘要:电化学阻抗光谱(EIS)是一种表征电化学系统的强大非侵入性工具。应用于锂离子电池,EIS被证明是其最先进的(SOH)的信息指标。但是,EIS受线性和平稳性的限制限制,而锂离子电池固有地以非线性和非平稳的方式行为。关于线性,电极上的电压是电流通过电极的非线性函数。线性是通过在操作点上应用零均值电流激发来实现的,因此非线性函数在该范围内是准线性的。关于时间变化,充满电和完全放电的细胞的阻抗是不同的,对于原始和老化的细胞,或在室温和冰冻环境中保持的细胞相同。对于锂离子电池,这意味着在特定的电荷(SOC)和温度下,应以稳定状态进行EIS实验。因此,阻抗取决于工作点(温度和SOC),线性和平稳性的限制非常限制。最近,我们开发了Operando EIS,以揭示无法满足线性和平稳性的测量结果。该技术允许在一个随时间变化的轨迹上测量电化学系统的阻抗,例如,在充电或排放锂离子电池时。为此,使用了非零均值随机相多电流激发,并且从电压响应的光谱中估算了沿轨迹的时间变化阻抗。