1 Wroclaw University of Science and Technology, Wroclaw, Poland, 2 Department of Physics, Philipps-Universität Marburg, Germany, 3 Department of Materials Science and Metallurgy, Uni- versity of Cambridge, UK, 4 Laboratoire National des Champs Magnetiques Intenses, Toulouse, France, 5 Zernike Institute for Advanced Materials, University of Groningen, Netherlands, 6 Univ.Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, Rennes, France, 7 Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR - UMR 6226, Rennes, France, 8 Cavendish Laboratory, Uni- versity of Cambridge, Cambridge, UK, 9 Institute of Low Temperature and Structure Research, Wroclaw, Poland, 10 Department of Physics,克拉伦登实验室,英国牛津大学激子 - phonon耦合:揭开金属壁垒钙钛矿光学响应背后的驱动力12:00 - 12:15 We B-3 P. Steeger 1,M。Adnan 1,T。Deilmann 2,X。Deilmann 2,X。Li 3,S.Müller4,K.Skrzy J.S.Skrzynska 5,Hanfland 4,Hanfland 4,Hanfland,Hanfland,Hanfland 4,Hanfland,Hanfland,Hanfland,Hanfland, Kösters6,T。Block 6,R。Schmidt 1,I。Kupenko 3,C。Sanchez-Valle 3,G。Prakash 7,S。Michaelis de Vasconcellos 1和R. Bratschitsch 1
E 系列手持式光学折射仪中的低成本型号特别适合中小型企业的轻工业用途以及处理水果、饮料、糖果、果酱、蜂蜜和其他含糖产品的业余爱好者,也可用于计算乙二醇、防冻剂、切削液和淬火剂等传热流体的浓度或混合比。
当前针对脑部疾病和治疗的医疗干预包括行为、神经影像和基因诊断,以及药理学、神经外科和神经刺激干预。一种相对较新的治疗方法是使用靶向光学神经刺激。几十年来,传统的电刺激方法一直被用作神经病学和神经外科临床实践的标准方法。经典的例子包括术中映射(Venkatesh 等 2019)和针对帕金森病 (PD) 的深部脑刺激 (DBS)(Follett 等 2010),以及用于控制癫痫症的刺激(Bergey 等 2015)。然而,由于电流不可避免的扩散(Frankemolle 等 2010;McIntyre 等 2004),传统电刺激在功能特异性方面受到限制。来自非人类灵长类动物研究的早期证据已经描绘出毫米级组织的结构(Goldman-Rakic 和 Schwartz 1982),这强调了空间精度的至关重要性。同样,在人类大脑中,哪怕只有 1 毫米的偏移也会导致功能性偏移(Huber 等人 2020;Yacoub 等人 2008),这种扩散会导致刺激可能不属于治疗范围的区域。这种激活扩散可能会在临床实践中引起不良副作用,例如患者术后面部痉挛
光学通信集成电路的设计涉及各种技术,以提高性能,鲁棒性和功率效率。本文讨论了使用不同拓扑结构的无电感器,可变带宽和功率可观的光接收器前端的发展。它突出了校准时钟和数据恢复系统以最大程度地减少能息影响的重要性。该设计还提出了在65 nm CMOS工艺中制造的高增益宽带逆变器的cascode变速器放大器。多个带宽增强技术用于改善放大器的性能。此外,本文提出了一种低功率医疗设备和高通用性电子设备,该设备几乎没有功耗。20-Gb/s时钟和数据恢复电路的设计结合了用于低功率耗散的高速操作的注射锁定技术。频率监控机制可确保VCO固有频率和数据速率之间的密切匹配。此外,该文章介绍了在0.13 UM CMOS过程中制造的10 GB/S爆发模式变速器放大器(BMTIA),该过程已用于被动光网(PONS)中的爆发模式接收器。SIGE BICMOS中155-MB/S-4.25-GB/S激光驱动器的设计可在具有分段的驱动器切片方案的广泛调制电流上保持动态性能。CDR IC具有添加的Demux功能,并在尖端生产技术中实现。通过引用有关该主题的著名论文和书籍,讨论了硅光子学的最新进展。B.最后,本文讨论了CMOS光学收发器的设计,该收发器符合IEEE802.3AH PX20标准的规格,并在/SPL PlusMn/0.4 DBM和/splplusmn/0.6 db中成功抑制了宽度从-40到100/spl spl deg/c/c。第一本关于可编程光子学的全面书籍提供了对基本原理,架构和潜在应用的深入概述。几项重要的研究表明,用于深度学习,量子信息处理和其他用途的大规模可编程光子电路。最近的一项研究提出了基于氮化硅波导的8×8可编程量子光子处理器,表现出低光损失,对单个光子上的线性量子操作有吸引力(Taballione等,2018)。这项成就引发了人们兴趣探索可编程光子电路处理微波信号的功能。研究人员在开发通用离散的傅立叶光子光子集成电路架构(Hall&Hasan,2016),玻璃芯片上可重构的光子学(Dyakonov等,2018)和光学处理器实现的神经网络(Shokraneh等人,2019年)方面取得了重大进展。这些进步为创新应用打开了大门,例如具有DSP级灵活性和MHz波段选择性的光子RF过滤器(Xie等,2017)。大规模硅量子光子学的发展也使实施了任意的两Q量处理(Qiang et al。,2018)和具有集成光学的多维量子纠缠(Wang等,2018)。pai,S。等。IEEE J. SEL。IEEE J. SEL。此外,还使用可重构光子电路来生成,操纵和测量纠缠和混合物(Shadbolt等,2012)。此外,研究的重点是使用纯正的可编程网格(Annoni等,2017)进行解散光,并实施了综合透明检测器,这些透明检测器可以测量光强度而不诱导额外的光损失。这些可编程光子电路中的这些进步为量子计算,电信及以后的创新应用铺平了道路。任意前馈光子网络的并行编程。顶部。量子电子。25,6100813(2020)。 Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。25,6100813(2020)。Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Reck,M.,Zeilinger,A.,Bernstein,H。J.&Bertani,P。任何离散统一操作员的实验实现。物理。修订版Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Lett。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。&Bogaerts,W。耐受性,宽带可调2×2耦合器电路。选择。Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E.使用双驱动方向耦合器的集成光子可调基本单元。选择。Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A.&Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。J.光。技术。38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。38,723–735(2020)。插图广告Google Scholar Miller,D。A.J. Opt。Soc。B.使用自配置网络分析和生成多模光场。Optica 7,794–801(2020)。插图广告Google Scholar Morizur,J.-F。等。可编程的统一空间模式操作。am。A 27,2524(2010)。插图广告Google Scholar Labroille,G。等。基于多平面光转换的高效和模式选择性空间模式多路复用器。选择。Express 22,15599–15607(2014)。饰物ADS PubMed Google Scholar Tanomura,R.,Tang,R.,Ghosh,S.,Tanemura,T。&Nakano,T。使用多层方向耦合器使用多层方向性耦合器。J.光。技术。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A. B. 设置干涉仪的网格 - 反向局部光干扰方法。 选择。 Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。 校准和量子光子芯片的高保真度测量。 新J. Phys。 15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A.B.设置干涉仪的网格 - 反向局部光干扰方法。选择。Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。校准和量子光子芯片的高保真度测量。新J. Phys。15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。15,063017(2013)。插图广告Google Scholar Cong,G。等。通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。选择。Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。多功能硅光子信号处理器核心。nat。社区。8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。8,1–9(2017)。此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。单层整合的多层硅二硅硅波导平台的最新进展已使三维光子电路和设备的开发(Sacher等,2018)。AIM Photonics MPW已成为一种高度可访问的技术,用于快速的光子综合电路(Wahrenkopf等,2019)。此外,具有紧凑的平面耦合器,跨言式缓解和低跨界损失的多平面无定形硅光子的发展进一步扩大了光子整合电路的能力(Chiles等,2017)。在热控制方面,已经提出了对硅光子电路的热控制的各种加热器架构,包括用于CMOS兼容的硅热硅热电器(Van Campenhout等,2010)的NISI波导加热器(Van Campenhout等,2010),并取消热跨与光的跨核电效应,对光电综合通道效应(MilanizaDeh et al。)。电流效应也在硅中进行了研究,并在光学调节剂中进行了重要应用(Reed等,2010)。此外,用于集成光子学的硅氧核平台的开发使创建具有降低光学损失的光子设备(Memon等,2020)。压电调谐的氮气环谐振器也已被证明,并具有潜在的光子整合电路中的应用(Jin等,2018)。此外,使用压电铅锆钛酸钛酸盐(PZT)薄膜开发了应力调节剂,从而可以创建可调光子设备(Hosseini等,2015)。Wuttig等。派兰多·赫兰兹(Errando-Herranz)等。Quack等。使用液晶壁板还可以广泛调整硅在隔离器环谐振器中,并具有潜在的光子整合电路中的应用(De Cort等,2011)。此外,使用具有液晶浸润的SOI插槽波导开发了数字控制的相变,从而可以创建可调光子设备(Xing等,2015)。最后,在硅硅酸盐和纳米结构的钛酸钡中已证明了大型的效应,并在光子综合电路中具有潜在的应用(Abel等,2019)。开发了用于非易失性光子应用的相变材料。研究了启用MEMS的硅光子集成设备和电路。研究了启用了MEMS硅光子集成设备和电路的性能。通过通用可编程光子电路降低原型光子应用的成本是一个不断增长的领域。几项研究探索了这些电路在各个领域的潜力,包括硅光子系统和IIII-V-ON-ON-ON-ON-ON-ON-ON-ONICON整合。研究人员一直在开发技术,例如用于控制大型硅光子电路的热光相变,以及用于硅光子平台中高速光学互连的活性组件。这些进步可能有可能使创建更有效,更可扩展的光子系统。此外,研究还研究了III-V材料在硅底物上的整合,这可能会导致改善的性能和降低光子学应用的成本。研究人员还一直在探索通过创新来提高光学互连效率的方法,例如基于转移打印的III-V-n-Silicon分布式反馈激光器的集成。最近的工作集中在开发可编程的光子电路上,这些电路可以针对不同的应用进行重新配置,从而有可能减少原型制作所需的成本和时间。这些电路可用于各种光子系统,从高速光学互连到量子技术。还研究了这些发展的经济可行性,研究人员探索了通过使用通用可编程光子电路来降低成本的方法。此外,一些研究已经深入研究了新的应用,例如全光信号处理和光学证明,突出了各个领域的光子学的巨大潜力。改写文本:对光子相关的研究论文的调查和来自信誉良好的来源的文章揭示了对微波信号处理的可编程光子组件的重视。值得注意的是,最近的研究集中在使用集成波导网格的可重构光学延迟线和真实时延迟线的发展。此外,人们对无线电纤维技术,激光雷达系统体系结构和量子计算应用的兴趣越来越大。光子学与其他技术的整合已导致在诸如光谱传感,激光多普勒振动法和光束束成形和转向等领域的显着进步。尽管最初令人兴奋,但身体和经济因素阻碍了进步。此外,对光子生物传感器,硅光子电路和六束同伴激光多普勒振动的研究表明,在各种应用中的准确性和效率提高了潜力。最近的研究还强调了可编程超导处理器和量子机学习算法的重要性。已经探索了使用集成波导网格的可重构光学延迟线和真实时延迟线的开发,重点是提高信号处理能力。用于光谱传感的硅光子电路和六光同源性激光多普勒振动法在各种应用中显示出令人鼓舞的结果。量子计算研究继续前进,最近的研究表明使用可编程超导处理器进行量子至上。光子学与其他技术的集成为改进信号处理,传感和计算功能开辟了新的可能性。Ivan P. Kaminow的2008年Lightwave Technology Journal of Lightwave Technology文章重点介绍了自1969年以来光学综合电路的希望。最近的商业发展可能标志着光子摩尔定律曲线的开始。关键里程碑包括从可见的LED到III-V光子综合电路(图片)的过渡。审查了显着的进步,例如大规模INP发射器和接收器图片,速度高达500 GB/s和1 TB/s。此外,自从CMOS晶圆晶片级集成以来,硅光子电路包装已显着改善。专家通过通用的基础方法预测了微型和纳米光子学的革命,与三十年前的微电子中类似创新的影响相呼应。硅光子学有望为从电信到生物医学领域的各种应用提供低成本的光电溶液。
Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y-n c-n c-n c-n d/4。0/。
2历史11 2.1早期:水手和维京人。。。。。。。。。。。。。12 2.2年龄的到来:Voyager。。。。。。。。。。。。。。。。。。。。。16 2.3创新和解决方法:伽利略。。。。。。。。。。。。。。18 2.4地标:附近的鞋匠。。。。。。。。。。。。。。。。。21 2.5到期:卡西尼。。。。。。。。。。。。。。。。。。。。。。。。。22 2.6自治:深空1,星尘,深影响。。。。。。。23 2.7飞行硬件。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.8发展技术的发展。。。。。。。。。。。。。。27 2.9星目录。。。。。。。。。。。。。。。。。。。。。。。。。。。28 2.10立体局限器法。。。。。。。。。。。。。。。。。。。。。。29 2.11未来的任务。。。。。。。。。。。。。。。。。。。。。。。。。。30 2.12 JPL外的光导航。。。。。。。。。。。。。。。。。30 2.13摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31
部分激光处理被引入基于碳的微纤维,以产生出色的光子传感能力而不会产生偏差。这种处理带来了沿样品长度的塞贝克系数的分布,其中没有产生和感知具有外部偏置的光电压。使用线形激光斑,碳微纤维(CMF),石墨烯微纤维(GMF)和石墨烯气瓶纤维(GAF)使用了对μm尺度光子辐照的响应。对于无位置灵敏度的GAF发现了对入射光子的较高灵敏度。考虑到激光处理的激光量,GAF还观察到了更多的Seebeck系数变化。与GAF相比,GMF观察到较弱的Seebeck系数空间变化。然而,其光电压显示从激光处理区域到未处理的区域的突然变化。尽管CMF的Seebeck系数的空间变化较低,但它具有出色,准确的位置敏感的光响应,极化变化在≈100μm的距离内变化。这种独特的能力促使新的应用使用部分退火的CMF感知光束在微观尺度上的位置。
关于 Ribbon Ribbon Communications (Nasdaq: RBBN) 为全球服务提供商、企业和关键基础设施部门提供通信软件、IP 和光纤网络解决方案。我们与客户密切合作,帮助他们实现网络现代化,以在当今智能、始终在线和数据饥渴的世界中提高竞争地位和业务成果。我们创新的端到端解决方案组合提供无与伦比的规模、性能和灵活性,包括从核心到边缘的以软件为中心的解决方案、云原生产品、领先的安全和分析工具,以及适用于 5G 的 IP 和光纤网络解决方案。我们始终密切关注对环境、社会和治理 (ESG) 事务的承诺,并向我们的利益相关者提供年度可持续发展报告。要了解有关 Ribbon 的更多信息,请访问 rbbn.com。
1 印度国防先进技术国防部,印度浦那411025,2电子与传播工程,美国国家技术研究院卡纳塔克邦,曼加罗尔575025,印度3印度3印度3号信息与通信系信息学系,杰卡尔塔斯纳斯特尼斯大学,贾卡尔塔斯尼亚大学,jakarta 12520,jakarta in Indecia in Indearnia Sportia sibia sipia sipia s。 12550年,印度尼西亚5é科尔德·德科利(Cole de Technologiesupérieure)(éts),加拿大6网络安全系统和应用AI研究中心,黎巴嫩美国大学,BYBLOS P.O. Box 36,黎巴嫩7光学通信研究小组,诺森比亚大学,纽卡斯尔NE1,英国8号,8物理系,科罗拉多州立大学,普韦布洛,普埃布洛,CO 81001,美国9美国9号工程系,曼彻斯特大都会大学,曼彻斯特大都会大学,曼彻斯特M1 5GD,英国 * braziat.braazilraj.n.rraj.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a。 ); m.ijaz@mmu.ac.uk(M.I。)印度国防先进技术国防部,印度浦那411025,2电子与传播工程,美国国家技术研究院卡纳塔克邦,曼加罗尔575025,印度3印度3印度3号信息与通信系信息学系,杰卡尔塔斯纳斯特尼斯大学,贾卡尔塔斯尼亚大学,jakarta 12520,jakarta in Indecia in Indearnia Sportia sibia sipia sipia s。 12550年,印度尼西亚5é科尔德·德科利(Cole de Technologiesupérieure)(éts),加拿大6网络安全系统和应用AI研究中心,黎巴嫩美国大学,BYBLOS P.O. Box 36,黎巴嫩7光学通信研究小组,诺森比亚大学,纽卡斯尔NE1,英国8号,8物理系,科罗拉多州立大学,普韦布洛,普埃布洛,CO 81001,美国9美国9号工程系,曼彻斯特大都会大学,曼彻斯特大都会大学,曼彻斯特M1 5GD,英国 * braziat.braazilraj.n.rraj.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a。 ); m.ijaz@mmu.ac.uk(M.I。)印度国防先进技术国防部,印度浦那411025,2电子与传播工程,美国国家技术研究院卡纳塔克邦,曼加罗尔575025,印度3印度3印度3号信息与通信系信息学系,杰卡尔塔斯纳斯特尼斯大学,贾卡尔塔斯尼亚大学,jakarta 12520,jakarta in Indecia in Indearnia Sportia sibia sipia sipia s。 12550年,印度尼西亚5é科尔德·德科利(Cole de Technologiesupérieure)(éts),加拿大6网络安全系统和应用AI研究中心,黎巴嫩美国大学,BYBLOS P.O. Box 36,黎巴嫩7光学通信研究小组,诺森比亚大学,纽卡斯尔NE1,英国8号,8物理系,科罗拉多州立大学,普韦布洛,普埃布洛,CO 81001,美国9美国9号工程系,曼彻斯特大都会大学,曼彻斯特大都会大学,曼彻斯特M1 5GD,英国 * braziat.braazilraj.n.rraj.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a。 ); m.ijaz@mmu.ac.uk(M.I。)印度国防先进技术国防部,印度浦那411025,2电子与传播工程,美国国家技术研究院卡纳塔克邦,曼加罗尔575025,印度3印度3印度3号信息与通信系信息学系,杰卡尔塔斯纳斯特尼斯大学,贾卡尔塔斯尼亚大学,jakarta 12520,jakarta in Indecia in Indearnia Sportia sibia sipia sipia s。 12550年,印度尼西亚5é科尔德·德科利(Cole de Technologiesupérieure)(éts),加拿大6网络安全系统和应用AI研究中心,黎巴嫩美国大学,BYBLOS P.O. Box 36,黎巴嫩7光学通信研究小组,诺森比亚大学,纽卡斯尔NE1,英国8号,8物理系,科罗拉多州立大学,普韦布洛,普埃布洛,CO 81001,美国9美国9号工程系,曼彻斯特大都会大学,曼彻斯特大都会大学,曼彻斯特M1 5GD,英国 * braziat.braazilraj.n.rraj.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a。 ); m.ijaz@mmu.ac.uk(M.I。)印度国防先进技术国防部,印度浦那411025,2电子与传播工程,美国国家技术研究院卡纳塔克邦,曼加罗尔575025,印度3印度3印度3号信息与通信系信息学系,杰卡尔塔斯纳斯特尼斯大学,贾卡尔塔斯尼亚大学,jakarta 12520,jakarta in Indecia in Indearnia Sportia sibia sipia sipia s。 12550年,印度尼西亚5é科尔德·德科利(Cole de Technologiesupérieure)(éts),加拿大6网络安全系统和应用AI研究中心,黎巴嫩美国大学,BYBLOS P.O. Box 36,黎巴嫩7光学通信研究小组,诺森比亚大学,纽卡斯尔NE1,英国8号,8物理系,科罗拉多州立大学,普韦布洛,普埃布洛,CO 81001,美国9美国9号工程系,曼彻斯特大都会大学,曼彻斯特大都会大学,曼彻斯特M1 5GD,英国 * braziat.braazilraj.n.rraj.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a。 ); m.ijaz@mmu.ac.uk(M.I。)印度国防先进技术国防部,印度浦那411025,2电子与传播工程,美国国家技术研究院卡纳塔克邦,曼加罗尔575025,印度3印度3印度3号信息与通信系信息学系,杰卡尔塔斯纳斯特尼斯大学,贾卡尔塔斯尼亚大学,jakarta 12520,jakarta in Indecia in Indearnia Sportia sibia sipia sipia s。 12550年,印度尼西亚5é科尔德·德科利(Cole de Technologiesupérieure)(éts),加拿大6网络安全系统和应用AI研究中心,黎巴嫩美国大学,BYBLOS P.O.Box 36,黎巴嫩7光学通信研究小组,诺森比亚大学,纽卡斯尔NE1,英国8号,8物理系,科罗拉多州立大学,普韦布洛,普埃布洛,CO 81001,美国9美国9号工程系,曼彻斯特大都会大学,曼彻斯特大都会大学,曼彻斯特M1 5GD,英国 * braziat.braazilraj.n.rraj.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a。 ); m.ijaz@mmu.ac.uk(M.I。)Box 36,黎巴嫩7光学通信研究小组,诺森比亚大学,纽卡斯尔NE1,英国8号,8物理系,科罗拉多州立大学,普韦布洛,普埃布洛,CO 81001,美国9美国9号工程系,曼彻斯特大都会大学,曼彻斯特大都会大学,曼彻斯特M1 5GD,英国 * braziat.braazilraj.n.rraj.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a。); m.ijaz@mmu.ac.uk(M.I。)