肠球菌是肠球菌的成员,由于其潜在的致病性和抗生素耐药性,在水产养殖方面已成为一个重要的关注。这项研究旨在研究从公共鲤鱼(Cyprinus parpio)和罗非鱼(Oreochromis niloticus)中分离出的六种不同的肠球菌物种的分子诊断和表征,并评估了它们的遗传多样性,抗生素抗性谱谱以及潜在的毒素性因子。在分离株中,有65.3%的普通鲤鱼和60.8%的罗非鱼被鉴定为粪肠球菌。所有六个物种都证明了代谢各种碳水化合物的能力,表明代谢能力广泛。某些物种在特定碳水化合物的利用中显示出可变性。例如,粪肠球菌和粪肠球菌具有独特发酵的adonitol,而E. avium和E. hirae是唯一能够发酵D-弧菌醇的人。此外,在粪肠球菌中仅观察到voges-proskauer阳性。在生长条件下,除了粪肠球菌外,所有物种在4°C和45°C的繁殖中都繁殖,而大肠球菌未能在10°C下生长。E.粪便和E.粪便在pH 9.6生长良好。 溶血测试揭示了该物种之间的差异:粪肠球菌显示β-溶解性,而Gallinarum大肠杆菌表现出α-溶解。 仅在gallinarum大肠杆菌中观察到运动,而Esculin水解是粪肠球菌独有的。 环境适应性在物种之间有所不同。 E.鸟在6.5%NaCl中的生长有限,一些物种在0.1%甲基蓝牛奶中几乎没有生长。E.粪便和E.粪便在pH 9.6生长良好。溶血测试揭示了该物种之间的差异:粪肠球菌显示β-溶解性,而Gallinarum大肠杆菌表现出α-溶解。仅在gallinarum大肠杆菌中观察到运动,而Esculin水解是粪肠球菌独有的。环境适应性在物种之间有所不同。E.鸟在6.5%NaCl中的生长有限,一些物种在0.1%甲基蓝牛奶中几乎没有生长。粪肠球菌和大肠杆菌在60°C下显示生存15分钟,粪肠球菌在30分钟时显示出有限的生存率,使它们与其他物种区分开。从巴斯拉市当地养鱼场收集的cyprinus腕牛和尼洛菌分离的菌株被证实为16S rRNA基因测序的粪肠球大肠杆菌。使用特定引物的PCR研究将所有分离株鉴定为粪肠球菌。
1. 基因组编辑技术在鱼类中的应用。海洋生命科学与技术。2021 2. 基因组编辑及其在水产养殖遗传改良中的应用,水产养殖评论。2021 3. 利用工程化锌指核酸酶对黄鲶鱼(Pelteobagrus fulvidraco)中的肌生长抑制素基因进行可遗传的靶向失活。2011. Plos One。 4. 基因组编辑及其在水产养殖遗传改良中的应用。2021. 水产养殖评论。재편집 5. 利用 CRISPR-Cas9 系统进行基因组编辑以产生尼罗罗非鱼(Oreochromis niloticus)的纯红色种系。CRISPR 杂志。2021,표지사진 6. 基因组编辑及其在水产养殖遗传改良中的应用。2021. 水产养殖评论。 재편집
摘要。本评论研究了尼罗罗非鱼(Oreochromis niloticus(Linnaeus,1758)),北非cat鱼(Clarias Gariepinus(Burchell,1822))和草鲤鱼(ctenopharyngodonngodon didellien,valencien,184444444444),审查了尼罗罗非鱼(Oreochromis niloicus(Linnaeus,1758))的植物性饲料成分的消化率,习惯分别。 每个物种都表现出独特的消化适应性,影响其有效利用植物成分的能力。 Nile罗非鱼具有均衡的酶促曲线,显示出高明显的消化率系数(ADC),例如大豆粉(最高91.12%)和其他植物蛋白,可促进成本效益的植物性植物饲料的掺入。 北非cat鱼虽然适合富含蛋白质的动物饮食,但在补充氨基酸或酶时,可以有效消化植物蛋白,例如大豆餐,可实现高达95%的ADC。 草鲤具有用于加工纤维植物物质的专门肠道形态,受益于玉米叶(84.7%)等成分的高消化率,但具有更可变性,具有更多的纤维成分(如Duckweed(50%ADC))。 这种比较分析强调了对齐饲料配方与这些鱼的消化能力的重要性,以提高水产养殖中的饲料效率,生长和可持续性。 提倡对植物性成分进行战略选择和加工量身定制的基于植物的成分的发现,以优化营养并减少对鱼粉的依赖。 关键词:消化率,基于植物的饲料成分,饲料习惯。 简介。审查了尼罗罗非鱼(Oreochromis niloicus(Linnaeus,1758))的植物性饲料成分的消化率,习惯分别。每个物种都表现出独特的消化适应性,影响其有效利用植物成分的能力。Nile罗非鱼具有均衡的酶促曲线,显示出高明显的消化率系数(ADC),例如大豆粉(最高91.12%)和其他植物蛋白,可促进成本效益的植物性植物饲料的掺入。北非cat鱼虽然适合富含蛋白质的动物饮食,但在补充氨基酸或酶时,可以有效消化植物蛋白,例如大豆餐,可实现高达95%的ADC。草鲤具有用于加工纤维植物物质的专门肠道形态,受益于玉米叶(84.7%)等成分的高消化率,但具有更可变性,具有更多的纤维成分(如Duckweed(50%ADC))。这种比较分析强调了对齐饲料配方与这些鱼的消化能力的重要性,以提高水产养殖中的饲料效率,生长和可持续性。提倡对植物性成分进行战略选择和加工量身定制的基于植物的成分的发现,以优化营养并减少对鱼粉的依赖。关键词:消化率,基于植物的饲料成分,饲料习惯。简介。在追求可持续和具有成本效益的水产养殖时,由于鱼粉和其他基于动物的蛋白质的成本和环境影响不断上升,因此对植物性饲料成分的使用引起了极大的关注(Fantatto et al 2024; Dhar et al 2024; 2024; Jamil et al 2023)。将这些植物材料有效地纳入水产养殖饮食需要深入了解不同鱼类的消化能力和局限性。尼罗的罗非鱼,北非cat鱼和草稿
引言罗皮亚是世界上最广泛的鱼之一。尼罗农罗非鱼尼罗尼斯(Oreochromis niloticus)在所有市场中都被广泛接受,因为它由于其快速生长,高密度培养和疾病耐受性而被认为是所有罗非鱼种类中最重要的物种之一(El-Sayed,2006年)。在全球范围内,罗非鱼种植在过去十年中的发展非常快,以满足人类对动物蛋白的需求并减少营养差异。他们在全球培养的年增长率约为12.2%(Wang&Lu,2016年)。过去几十年来,几乎在亚洲和非洲的100个国家中,O. niloticus文化的全球范围迅速扩展(Gu等,2017)。罗非鱼是全球第二大养殖鱼类,由于其适合水产养殖,可销售性和稳定的市场价格,其生产在过去十年中已经三倍(FAO,2022年)。
水产养殖中的抽象鱼会面临压力,这是一个主要问题,因为它对鱼类的整体生命的影响。为了调节压力反应,研究人员正在转向使用营养素,而不是化学药物。在一项为期六周的研究中,使用圣罗勒(Ocimum Sanctum)来观察其对尼罗尼罗尼非位(Oreochromis niloticus)的压力的影响。通过将皮质醇加入饲料作为补充剂来诱导压力。三种不同的治疗方法(对照,应力,应激 - 罗勒),每种都有两个重复的治疗方法,用于测量血清皮质醇,溶菌酶活性,巨噬细胞吞噬作用,脾脏躯体指数和疾病因子。罗勒对任何参数均无显着影响。,但结果显示出应力和压力 - 巴西基团的皮质醇补充剂引起的压力的显着命令。结果表明罗勒可能具有调节尼罗罗非鱼的应力反应的潜力。
摘要。一般而言,弧菌是众所周知的病原体,导致水产养殖行业的高鱼死亡率和经济损失。这种细菌属在水生环境中普遍存在。当环境参数不在适当的范围之外,导致鱼类的压力与颤动的病原体(如Vibrio spp)的攻击时,在水生环境中发生细菌疾病爆发。在先前的研究中,这种细菌菌群引起了罗非鱼的疾病并记录了死亡率。因此,本研究量化了假定的颤音属。在尼罗河罗非鱼(Oreochromis niloticus)和在邦板牙Minalin的长大土池塘中获得的环境样品。大多数环境水质参数都在水产养殖的推荐水平之内,除了盐度,SECCHI椎间盘可见性,总溶解固体,电导率和沉积物pH。观察到的推定弧菌属的患病率。在鱼类和水样中均为100%,而沉积物样品中只有65%。进一步的分析表明,从10 8 CFU G -1的沉积物中获得了最高计数。推定弧菌属。鱼类和水中的数量范围为10 6至10 7 CFU G -1
鲶鱼(Clarias sp.)的动物蛋白质含量足够高,可以满足人体的需要。要想培育出鲶鱼,无论在生产力、外观还是尺寸方面,都需要合适的技术,即CRISPR Cas9基因工程技术。压缩规律间隔短回文重复序列 (CRISPR) 是一种利用 Cas9 酶功能的变化来编辑基因组的现代技术。希望CRISPR技术能够在基因工程领域得到更多的认识和发展。编写本文所采用的方法是对 CRISPR Cas9 在水产养殖中使用的鲶鱼 (Clarias sp) 的发展中进行的文献研究。所用方法是对之前进行的几项研究进行文献研究并进行描述性分析。 CRISPR Cas9 技术可应用于转基因鲶鱼 (Clarias sp.),这得到了先前应用于鲑鱼科 (大西洋鲑)、罗非鱼 (Oreochromis niloticus)、斑马鱼 (Danio reiro) 和鲶鱼 (Ictalurus punctatus) 的研究成功的支持。通过CRISPR Cas 9技术形成转基因鲶鱼可以实现的前景包括加速生长发育、增大骨骼肌,从而增加鲶鱼的体重。
必须改进可持续水产养殖方法,以应对环境压力和全球日益增长的粮食需求带来的问题。本研究探讨了尼罗罗非鱼(Oreochromis niloticus)养殖的前沿方法,重点关注免疫调节技术、微生物组改造以及减少环境压力以提高抗逆性和产量的关键任务。益生菌、益生元和合生元在增强营养吸收、增强抗病能力和优化肠道健康方面发挥着重要作用,因此微生物组改造成为一项至关重要的策略。使用富含生物活性化学物质的功能性饲料和研发定制疫苗是免疫调节方法取得进展的两个例子,这些方法已被证明有望增强罗非鱼的免疫系统,抵御病原体威胁。通过强化水产养殖系统、控制水质和培育抗逆性鱼种,同时减少缺氧、水温变化和污染物暴露等环境压力,从而提供保障可持续生产的整体策略。鉴于这些环境压力因素对该行业构成重大威胁,应对这些压力因素的重要性不言而喻。基因组学、转录组学和精准水产养殖工具等新兴技术能够监测和调整养殖作业,以适应尼罗罗非鱼的独特需求,进一步促进了这些策略的整合。本综述强调了以科学为导向的综合方法在将尼罗罗非鱼养殖转变为具有韧性、可持续且富有成效的产业方面的潜力,并强调了应对环境压力因素在这一转型中的重要性。图文摘要
这项研究旨在评估补充益生菌的饮食(芽孢杆菌),益生元(壳聚糖)和合成生物学在120天内的生长性能,先天免疫系统,抗氧化剂水平,肠道社区和粮食质量。实验性鱼(15.5±0.352g)随机分布到12个矩形聚乙烯储罐中,每个储罐60鱼。测试了四种重复的四种治疗方法:对照,益生菌(Sanolife®Pro-F,Pro),益生元(壳聚糖,PRE)和合成生素(益生菌和壳聚糖的组合,SYN)。结果表明,在益生菌治疗中,溶解的氧浓度显着增加和pH水平提高。与对照组相比,所有处理中的联合氨(NH3)水平均降低。益生元补充的饮食显着改善了最终体重,最终长度,体重增加,状况因子,平均每日体重增加,特定的生长速度和存活率。在补充益生菌的所有处理中,血清溶菌酶活性和一氧化氮水平均高。此外,益生菌组中肝脏中的超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GPX)酶水平明显更高,而马发二醛(MDA)水平降低。益生菌的添加和合成生的存在增加了四个月的鱼类肠和池塘水的总细菌数量。病原性气管疏松性仅在对照组的水中鉴定出来。大肠杆菌和沙门氏菌。16S rDNA基因测序在益生菌处理的水中鉴定出了sphaericus sphaericus,在对照处理的肉体中鉴定出cile胶菌菌。添加芽孢杆菌菌株和壳聚糖分别增强了尼罗罗非鱼(Oreochromis niloticus)的生长和健康。
微生物纳米技术,即微生物驱动的纳米生物技术,是微生物技术领域的一个新兴领域,它利用了生物技术过程。微生物的生物勘探可以生产大量不同的纳米级材料,例如有机纳米材料、金属及其氧化物纳米材料等。(Verma 等人,2022 年)。与化学、物理和物理化学方法等替代合成途径相比,微生物纳米工厂路线采用绿色简便的方法来生产生物纳米材料。微生物纳米材料具有功能化的生物活性基团,可在纳米级上提高稳定性和功能性。这些微生物纳米产品主要用作坚固的载体,用于完整地递送/利用生物活性成分,以用于从农业食品到制药行业的定制应用(Chamundeeswari 等人,2019 年)。微生物纳米材料已被用于净化环境有毒物质,通过生物催化将工业废水中产生的有害污染物降解为无害的副产品 ( Verma, 2017 ; Verma et al., 2020 )。因此,微生物纳米生物技术具有广泛的应用范围,构成了微生物纳米制造中一种经济高效的方法,并可能在不久的将来为社会带来巨大的利润。随着绿色纳米技术的出现,重金属和致病菌对可持续水产养殖业的影响可以降到最低。在这方面,Saad 等人利用枯草芽孢杆菌 AS12 开发了一种生产 77 纳米大小的硒纳米颗粒的有效方法。通过细菌介导的硒纳米粒子生物合成,富含功能性生物活性成分(即黄酮类化合物和次生代谢物)的细菌悬浮液提供了纳米粒子在形状和大小方面的稳定性。这些纳米粒子针对尼罗罗非鱼(Oreochromis niloticus)中两种重金属(Cd 和 Hg)的积累和致病细菌嗜水气单胞菌负荷进行了测试。进一步的作者建议,生物源硒纳米粒子可能非常适合用于污染水,以最大限度地减少致病微生物和重金属的副作用;从而提高水产养殖业的生产力。