表 31:按治疗划分的人口统计数据 – 单药 asciminib 治疗在筛选时未发生 T315I 突变的 CML-CP 患者(FAS)............................................................................................................. 170 表 32:按每个时间点的 MMR 率 – 单药 asciminib 治疗在筛选时不携带 T315I 突变且未处于 MMR 的 CML-CP 患者-MMR 可评估(研究 CABL001X2101)(FAS)。 173 表 33:按每个时间点的 MMR 率 – 单药 asciminib 治疗在筛选时不携带 T315I 突变且未处于 MMR 的 CML-CP 患者-MMR 可评估(研究 CABL001X2101)(FAS)。 175 表 34 按治疗划分的人口统计学信息 – 筛选时携带 T315I 突变的 CML-CP 患者使用 asciminib 单药治疗(FAS) ............................................................................................................. 180 表 35:暴露持续时间 – 研究 CABL001A2301、研究 CABL001X2101 和 asciminib 安全池(安全集) ............................................................................................................. 192 表 36:死亡摘要 – 研究 CABL001A2301、研究 CABL001X2101 和 asciminib 安全池(安全集) ............................................................................................................. 195 表 37:按首选术语和分级划分的严重不良事件,与研究治疗关系无关 1 – 研究 CABL001A2301、研究 CABL001X2101 和 asciminib 安全池(安全集) ............................................................................................................................. 201 表38:按首选期限和分级划分的导致研究治疗停止的不良事件 - 研究 CABL001A2301、研究 CABL001X2101 和 asciminib 安全池(安全组)205 表 39:按首选期限和分级划分的导致剂量中断或调整的不良事件,在任一治疗组中至少有 2 名患者发生-(研究 CABL001A2301)(安全组)......................................................................................... 208 表 40:不良事件(研究 CABL001A2301 和 asciminib 安全池中至少为 5%,研究 CABL001X2101 1 中至少为 15%)(安全组)......................................................................................... 211 表 41:在 Ph+ CML-CP 患者中,按首选期限和 asciminib 治疗发生在 10% 的患者中,无论与研究治疗的关系如何,筛选时的 T315I 突变 – 研究 CABL001X2101(安全集) .............................................................. 219 表 42:核心数据表按 SOC 和 ADR 列出的药物不良反应频率和频率类别 – 研究 CABL001A2301、研究 CABL001X2101 和池 A(安全集) ................................................................................................................ 222 表 43:核心数据表(CDS)按 SOC 和 ADR 列出的药物不良反应频率和频率类别 – 研究 CABL001X2101 和池 A:单药 asciminib 在筛选时携带 T315I 突变的 CML-CP 患者中的应用(安全组) ........................................................... 227 表 44:可披露的财务安排和利息摘要 ............................................................................................. 269 表 45:用于测量人血浆中 ABL001 的生物分析方法的方法性能摘要 ............................................................................................................. 273 表 46:来自 FDA 最终群体 PK 模型的 PK 参数估计值 ............................................................................. 282 表 47:FDA 对第 24 周 MMR 概率的多变量暴露-反应分析与无 T315I 突变患者的 Asciminib 平均每日 AUC ............................................................................................................................. 294 表 48:FDA 对第 24 周 MMR 概率的多变量暴露-反应分析与无 T315I 突变患者的 Asciminib 平均每日 AUC .............................................................................................................携带 T315I 突变患者的 Asciminib 平均每日 AUC .............................................................................. 294 表 49. Asciminib ADAM-PBPK 模型的输入参数 ........................................................................ 307 表 50:健康受试者单次给药和癌症患者多次给药后 Asciminib 的预测和观察到的 PK 参数 ................ ...
摘要。多代理的编程(MAOP)范式为模型和实施代理人及其组织和环境提供了抽象。近年来,研究人员已开始探索MAOP和面向资源的Web体系结构(REST)的整合。本文通过在Jacamo-Rest上展示了一项持续的工作,这是一项持续的研究,这是一种基于资源的基于资源的网络编程平台JACAMO的抽象。jacamo- reth将多代理系统(MAS)互操作性达到新级别,不仅可以与万维网的服务或应用程序进行交互,还可以通过其他应用程序在其规范中进行管理和更新。要将开发人员界面添加到适合Web的Jacamo中,我们提供了一个关于MAOP规范实体管理的新颖概念观点。我们将其作为编程接口应用程序的中间件进行了测试,该应用程序提供了现代软件工程设施,例如连续部署和MAS的迭代软件开发。
能源转型 一个完善且透明的绿色低碳氢能市场可以促进欧洲能源转型,并通过以下方式帮助欧洲成为可再生能源领域的第一: • 有助于实现欧盟到 2050 年减少 80-95% 温室气体排放 (GHG) 的目标; • 增加可再生能源的需求和供应; • 提高能源安全和能源多样性; • 通过能源储存促进可再生能源进一步融入电网; • 提供绿色氢能市场数量和质量的可见性; • 促进绿色增长和可持续性。 工业和运输脱碳 优质氢能有助于减少各种能源密集型行业和部门的碳排放,否则这些行业和部门很难脱碳。 • 到 2050 年,优质氢能可帮助至少 60% 的运输部门脱碳。 • 炼油厂使用优质氢能代替目前使用的温室气体密集型氢能,对柴油和汽油等传统燃料进行脱碳。 • 优质氢气可以引领其他行业进一步脱碳(例如钢铁制造、氨、化学工业等)以消费者为中心优质氢气的 GO 将消费者置于中心,消费者是实现欧盟能源转型的关键驱动力,也是能源联盟的主要目标:• 它提供透明度,从而增强消费者的权利。• 欧盟范围内的优质氢气 GO 贸易为整个欧盟提供优质氢气,包括未生产优质氢气的地区。
我们一直在忙于为此做准备。去年,我们曾提到要启动一项为期 3 年的扩张计划——1000 天计划——旨在促进增长和抢占市场份额。为此,我很高兴地报告,在 2021-22 财年,我们已于 2021 年 11 月相继在巴罗达启用了专用特种香料化工厂,并于 2022 年 1 月扩大了巴雷利松油醇工厂的产能。其他资本支出计划正在进行中,旨在增强我们在巴罗达、巴雷利和马哈德工厂的樟脑和特种香料成分产能。由于 COVID-19 顺风、钢铁价格上涨和地缘政治紧张局势导致供应链中断,我们预计会出现适度延迟。我们的团队正在跟踪外部环境,以根据需要采取必要行动。
从 Purple Analog No. 中回收的原始故障主继电器开关1,作者 Frank Rowlett。在第一次解密尝试期间检查电源电路时,Leo Rosen 发现主继电器触点已熔合在一起。Frank Rowett 找到了另一个继电器,Rosen 做了一些快速数学计算,并决定在安装之前将电容器连接到替换继电器的触点上。新继电器安装到位后,机器一直运行良好,直到战争结束。
申请人于 2020 年 5 月 27 日提交了原始 BLA,寻求加速批准。BLA 于 2021 年 4 月 27 日收到完整回复,基于 CMC 制造重大缺陷以及在有可用疗法时使用加速批准 (AA) 途径。OPQ 团队得出结论,原始申请中提交的数据不足以支持这样的结论:PRX102 的制造得到良好控制,并且将产生在保质期内纯净有效的产品。对药品生产现场的记录检查导致对该设施提出了暂停建议,并且由于 COVID 相关旅行问题,尚未对药物物质现场进行检查。在 PRX102 的初始审查周期中,ERT Fabrazyme(阿加糖酶β)的 BLA 从加速批准转为传统批准,使 Fabrazyme 成为一种可用的疗法,与考虑将 AA 用于治疗法布里病的其他药物有关。因此,PRX102 不再符合 AA 资格,因为没有足够的证据来确定 PRX102 是否比现有治疗 (Fabrazyme) 为患者提供了有意义的治疗益处。在此次重新提交中,申请人提交了研究 PB-102-F20 (F20) 的结果,这是一项随机、双盲、主动对照研究,旨在寻求 PRX102 的传统批准。
.. sideDerminate):ara4gaosa ys 1,9ateifarmeroo»89,梳妆台erarf t cug1 t cug1 t(绿色数据簿):gg gggmcaKaírefap faaate tricna -ia列表UJIAN A1 A1 A,UC CI 7顺式)(R):0 79AI Q UIC UIC UICETAI4,UWAA U,
从文明的曙光开始,农业一直是人类社会的骨干,提供了维持和助长经济增长。但是,这个关键部门通常面临挑战,强调了资本在克服这些障碍和确保可持续农业实践中的关键作用。资本从广义上讲,资本包括有效农业生产所需的各种资源。有形资本包括机械,灌溉系统,存储设施和运输基础设施等物理资产。现代农业在很大程度上依赖拖拉机,收割机和精确的农业设备,从而提高了效率和生产力。灌溉系统可确保足够的供水,同时存储设施最大程度地减少收获后的损失。强大的运输基础设施包括农民和农业专业人员所拥有的知识,技能和专业知识。对教育,研发和扩展服务的投资使农民能够通过专有技术来采用可持续实践,改善土地管理并有效地利用新技术。此外,农业部门内部的创新投资促进了改善农作物品种,弹性种子和有效的害虫管理技术的发展。金融资本资本资料为各种农业活动所需的资金,包括购买诸如加油,种子以及种子的购买投入,以及融资土地改善和筹集土地改善和融资。获得负担得起的信贷,使农民可以投资至关重要的资源并采用现代实践,最终增强其竞争力和盈利能力。
磨砂鼠伤寒是由革兰氏阴性细菌(Orientia tsutsugamushi)引起的一种威胁生命的,未分化的发热疾病。细菌菌株是应考虑的全球健康问题。尽管为开发有效的免疫原性疫苗开发了数年的努力,但仍未获得成功的许可疫苗。该研究的目的是使用反疫苗学方法来构建表位反应。TSA56和SCAA蛋白合并可能是针对O. tsutsugamushi的最有希望的亚基疫苗。预测了 b细胞,CTL和HTL表位,随后,所有表位分别由KK,AAY和GPGPG接头连接,以及N末端区域的佐剂。此外,进行了分子对接和MD模拟,对TLR-2表现出较高的属性。鉴定并验证了16个线性B细胞,6个CTL和2个HTL表位。最终疫苗构建体显示高抗原性,稳定性和溶解度。分子对接和MD模拟表明与TLR-2和稳定的疫苗受体复合物相互作用。通过在计算机克隆中成功实施了疫苗在PET28A(+)载体中的表达,以及免疫模拟的显着结果表明,在先天性和适应免疫反应过程中,疫苗在免疫细胞相互作用中的效率证明了免疫反应中的效率。总而言之,结果表明,如果通过实验进行进一步研究,新开发的疫苗将是控制和提供针对SCRUB TYPHUS的明确预防措施的有前途的候选人。
未来电动飞机和混合动力飞机对电力的需求不断增加,机载系统的高功率电力转换研究工作一直在进行中。航空系统的安全关键性质使航空电力转换器的可靠性成为关键的设计考虑因素。本文研究了电力电子系统的可靠性,重点研究了关键子部件的寿命限制因素。为起动发电机驱动转换器建模了不同系统电压水平下的电压源功率转换器的可靠性。一个关键的观察结果是,Si IGBT 器件足以满足低压和中压系统(高达 540 V)的可靠性要求。在更高的系统电压(高于 540 V)下,使用 Si IGBT 进行设计需要多级拓扑。在恒定功率曲线驱动中,转换器直流链路中薄膜电容器的磨损故障对系统可靠性的影响最小。在没有增强电压降额的多级拓扑中,系统可靠性主要受宇宙射线引起的随机故障影响。仿真结果表明,在高系统电压 (810 V) 下,带有 SiC mosfet 的 2 L 拓扑在可靠性方面优于基于 Si IGBT 的 3 L 拓扑。