日本千雪大学,(OMC)成员hitoki yoneda electro-communications(ALPS)Osamu Matoba Kobe大学(BISC,SI-THRU)Yasuhiro Awatsuji Kyoto技术研究所(BISC)大阪大学(HEDS)的激光工程OPTM)Yukitoshi Otani Utsunomiya大学(OPTM)Tomoyuki Miyamoto Tokyo Tokyo技术学院(OWPT)Kayo Ogawa Japan Japan Japan Wemen的Wemen的大学(OWPT)Takunori Taira Taira Riken(Tila-lic)石川理化学研究所 (XOPT) 山内一人 大阪大学 (XOPT) 近藤信之 OPI 理事会、日本激光株式会社会长 武田光男 OPI 理事会、宇都宫大学 OPI 理事会 绿川胜美 OPI 理事会、日本理化学研究所先进光子学中心主任 上田健一 电气通信大学名誉教授
teruaki enoto 1† *,toshio terasawa 2,3,4† *,shota kisaka 5,6,7† *,下巴hu hu 1,8,9† *,塞巴斯蒂安·吉洛特10,塞巴斯蒂安·吉洛特10,Natalia Lewandowska 11,Natalia Lewandowska 11,Christian Malacaria 12,13,Christian Malacaria 12,13,13,13,Paul S. Ray 14,Wiyn wyn wyn wyn wyn wyn wyn wiy n.ho 11,15,爱丽丝·K Ick Foster 24,Yasuhiro Murata 25,26,27,Hiroshi Takeuchi 25,27,Kazuhiro Takefuji 26,28,Mamoru Sekido 28,Yoshinori Yonekura 29,Hiroaki Misawa 30,Fuminori Tsuchiya Tsuchiya 30,Takahiko Aoki 31,Takahiko aoki 31,Muntechi 32,Munthy 32 ,35,Tomoaki Oyama 33,Katsuaki Asano 2,Shinpei Shibata 36,Shuta J. Tanaka 37
日本千雪大学(OMC)成员hitoki yoneda电气通讯大学(ALPS)OSAMU MATOBA KOBE大学(BISC,SI-THRU)Yasuhiro Awatsuji Kyoto技术研究所(BISC)大阪大学(HEDS)ASER工程学,大阪大学(HEDS)Yasuhiko Arakawa Tokyo University of Tokyo(ICNNQ)Toshihiko Shimizu Shimizu Shimizu Shimizu Osaka University(LSC) Omiya大学(OPTM)Tomoyuki Miyamoto科学学院东京(OWPT)KAYO OGAWA JAPAN JAPAN WEMEN的WEMENS(OWPT)TAKUNORI TAIRA RIKEN(TILA-LIC)TETSUYA ISHIKAWA RIKEN(XOPT)山内 大阪大学 (XOPT) 近藤 伸之 OPI 理事会、日本激光株式会社会长 武田 光男 宇都宫大学 OPI 理事会 绿川 胜美 OPI 理事会、日本理化学研究所先进光子学中心主任 上田 健一 电气通信大学名誉教授
takuya uehata(日本京都大学)Yamada(日本京都大学)Daisuke Ori(日本京都大学)Alexis Vandenbon(日本京都大学,日本京都大学)Amir Giladi(以色列科学学院)Adam Jelinski(weizmann Instraizhir) (日本京都大学)Hitomi Watanabe(日本京都大学)Kazuhiro Takeuchi(日本京都大学)Kazunori Toratani(日本京托大学,日本京都大学)Takashi Mino(日本京都大学,日本)HISANORI KIRYU(日本)托尔伊大学(University the University of Tokanori kiryu) Tsujimura(日本荷马科医科大学)Tomokatsu Ikawa(日本东京科学大学)kondoh(日本京都大学)Markus Landthaler(MaxDelbrück,德国分子医学中心)阿米特(以色列魏兹曼科学学院)雅amoto(日本京都大学)Masaki Miyazaki(日本京都大学生命与医学科学研究所)Osamu Takeuchi(日本京都大学)
海报演示(截至9/14/23)海报会议10月12日星期四| 12:30 pm-4:00 PM 2级,展览馆D A001:映射C型凝集素域14A和多疗法之间的相互作用2。Aleen Baber,伯明翰大学,伯明翰,英国。A002:胶质母细胞瘤患者衍生异种移植物(PDXS)模型的临床前试验的实用性,以告知治疗策略的临床试验开发。DANIELLE M. BURGENSKE,MAYO诊所,美国新罕布什尔州罗切斯特。 a003:一种用于高风险和复发/难治性肝类母细胞瘤的新型治疗策略。 Andres F. Espinoza,美国德克萨斯州休斯敦贝勒医学院。 A004:在小鼠模型中,ASP1570增强了抗肿瘤免疫力:一种新型的DGKζ抑制剂为治疗癌症提供了潜在的免疫疗法。 Osamu Ikeda,Immuno-Oncology,Astellas Pharma Inc.,Tsukuba,Ibaraki,日本。 A005:新型免疫细胞疗法,检查点抑制剂和免疫细胞转向器中的临床前评估。 Glenn Smits,EPO GmbH,柏林,德国。 A006:表征BRCA1/2突变体TNBC乳腺癌PDX模型中多西他赛和PARP抑制剂的PARP抑制剂和协同作用的抗肿瘤反应。 Jingjing Wang,Crown Bioscience Inc.,美国加利福尼亚州圣地亚哥。 A007:临床前骨转移技术平台 - 对骨转移实验疗法的预测评估。 TiinaE.Kähkönen,芬兰基维尼米的Oncobone。 a008:基于BA/F3激酶工程细胞系的体内筛选平台,用于发现下一代激酶抑制剂。DANIELLE M. BURGENSKE,MAYO诊所,美国新罕布什尔州罗切斯特。a003:一种用于高风险和复发/难治性肝类母细胞瘤的新型治疗策略。Andres F. Espinoza,美国德克萨斯州休斯敦贝勒医学院。 A004:在小鼠模型中,ASP1570增强了抗肿瘤免疫力:一种新型的DGKζ抑制剂为治疗癌症提供了潜在的免疫疗法。 Osamu Ikeda,Immuno-Oncology,Astellas Pharma Inc.,Tsukuba,Ibaraki,日本。 A005:新型免疫细胞疗法,检查点抑制剂和免疫细胞转向器中的临床前评估。 Glenn Smits,EPO GmbH,柏林,德国。 A006:表征BRCA1/2突变体TNBC乳腺癌PDX模型中多西他赛和PARP抑制剂的PARP抑制剂和协同作用的抗肿瘤反应。 Jingjing Wang,Crown Bioscience Inc.,美国加利福尼亚州圣地亚哥。 A007:临床前骨转移技术平台 - 对骨转移实验疗法的预测评估。 TiinaE.Kähkönen,芬兰基维尼米的Oncobone。 a008:基于BA/F3激酶工程细胞系的体内筛选平台,用于发现下一代激酶抑制剂。Andres F. Espinoza,美国德克萨斯州休斯敦贝勒医学院。A004:在小鼠模型中,ASP1570增强了抗肿瘤免疫力:一种新型的DGKζ抑制剂为治疗癌症提供了潜在的免疫疗法。Osamu Ikeda,Immuno-Oncology,Astellas Pharma Inc.,Tsukuba,Ibaraki,日本。 A005:新型免疫细胞疗法,检查点抑制剂和免疫细胞转向器中的临床前评估。 Glenn Smits,EPO GmbH,柏林,德国。 A006:表征BRCA1/2突变体TNBC乳腺癌PDX模型中多西他赛和PARP抑制剂的PARP抑制剂和协同作用的抗肿瘤反应。 Jingjing Wang,Crown Bioscience Inc.,美国加利福尼亚州圣地亚哥。 A007:临床前骨转移技术平台 - 对骨转移实验疗法的预测评估。 TiinaE.Kähkönen,芬兰基维尼米的Oncobone。 a008:基于BA/F3激酶工程细胞系的体内筛选平台,用于发现下一代激酶抑制剂。Osamu Ikeda,Immuno-Oncology,Astellas Pharma Inc.,Tsukuba,Ibaraki,日本。A005:新型免疫细胞疗法,检查点抑制剂和免疫细胞转向器中的临床前评估。Glenn Smits,EPO GmbH,柏林,德国。A006:表征BRCA1/2突变体TNBC乳腺癌PDX模型中多西他赛和PARP抑制剂的PARP抑制剂和协同作用的抗肿瘤反应。Jingjing Wang,Crown Bioscience Inc.,美国加利福尼亚州圣地亚哥。A007:临床前骨转移技术平台 - 对骨转移实验疗法的预测评估。TiinaE.Kähkönen,芬兰基维尼米的Oncobone。a008:基于BA/F3激酶工程细胞系的体内筛选平台,用于发现下一代激酶抑制剂。Stephanie Wang,京无生物技术,美国沃尔瑟姆,美国。a009:NGS-QC-Panel的新版本可以更好地对人类和鼠标样品的表征进行更好的身份验证和表征。Wubin Qian,Crown Bioscience Inc.,中国苏州(大陆)。A010:Gloriosine通过对非小细胞肺癌的YAP转录活性负调控而通过自噬细胞死亡诱导细胞周期停滞。Gloriosine是具有有效抗癌活性的有效生物碱衍生物。Biswajit Dey,印度海得拉巴国立药物教育与研究所。 A011:NRBF2通过增加胶质母细胞瘤中自噬介导的代谢物补体来诱导放射线。 Eunguk Shin,北商,澳大利亚,韩国,共和国。 A012:STX1A在介导组织蛋白酶GO进入人结直肠癌细胞中的作用。 瓦莱里·罗森(Valery Rozen),密歇根州立大学人类医学院,美国密歇根州大瀑布城。 A013:用BRG1/BRM抑制剂FHD-286治疗的AML患者在单细胞分辨率下可见的白血病干细胞分化。 Ginell Elliott,Foghorn Therapeutics,美国剑桥,美国。Biswajit Dey,印度海得拉巴国立药物教育与研究所。A011:NRBF2通过增加胶质母细胞瘤中自噬介导的代谢物补体来诱导放射线。Eunguk Shin,北商,澳大利亚,韩国,共和国。A012:STX1A在介导组织蛋白酶GO进入人结直肠癌细胞中的作用。瓦莱里·罗森(Valery Rozen),密歇根州立大学人类医学院,美国密歇根州大瀑布城。A013:用BRG1/BRM抑制剂FHD-286治疗的AML患者在单细胞分辨率下可见的白血病干细胞分化。Ginell Elliott,Foghorn Therapeutics,美国剑桥,美国。
冠状动脉介入治疗·药物洗脱支架植入后血流储备分数和冠状动脉血流储备的预后意义 Hiroki Ueno、Masahiro Hoshino、Eisuke Usui、Tomoyo Sugiyama、Yoshihisa Kanaji、Masahiro Hada、Toru Misawa、Tatsuhiro Nagamine、Yoshihiro Hanyu、Kai Nogami、Kodai Sayama、Kazuki Matsuda、Tatsuya Sakamoto、Taishi Yonetsu、Tetsuo Sasano、Tsunekazu Kakuta ········· 853 社论 支架植入后的冠状动脉血流储备能否成为靶血管衰竭的有用预测指标? Hirohiko Ando,Carlos Collet,Tetsuya Amano·······860·吸收GT1可生物可吸收的血管脚手架系统 - 日本的5年后市场监视研究 - Nakamura Masato Nakamura Tomohiro Sakamoto,Kengo Tanabe,Hajime Kusano,Kelly A. Stockelman,Ken kozuma·kozuma············· ELET治疗,然后在可生物降解的聚合物洗脱支架植入后进行P2Y 12抑制剂单一疗法 - REIWA地区范围范围内注册表 - Masaru Ishida,Ryutaro Shimada,Fumiaki Takahashi,Takahashi田口、大崎卓也、西山修、远藤宏、坂本良平、田中健太郎、小枝依彦、木村匠、后藤岩男、二宫亮、佐佐木涉、伊藤友德、森野义弘、令和会调查员代表 ········· 876
我们感谢“将阳光转化为太阳能燃料和化学品”任务创新挑战赛成员以及在欧洲(2019 年 10 月,SUNRISE 项目)、日本(2019 年 11 月)和美国(2020 年 11 月)举行的相应研讨会的参与者的贡献。编辑团队由欧盟委员会 Thomas Schleker 博士和欧盟委员会 Philippe Schild 博士领导,成员包括德国联邦经济和能源部 Peter Vach 博士;瑞典乌普萨拉大学 Leif Hammarström 教授;英国伦敦帝国理工学院 James Durrant 教授;英国伦敦帝国理工学院 Sacha Corby 博士;英国伦敦帝国理工学院 Oytun Babacan 博士;意大利国家研究委员会 (CNR) Alessandra Sanson 博士;美国国家可再生能源实验室 William Tumas 博士;巴西乌贝兰迪亚联邦大学 Antonio Otavio Patrocinio 教授;中国科学院韩红先教授;中国科学院李灿教授。三个路线图研讨会的领导人也为本文件做出了贡献:比利时鲁汶大学的 Carina Faber 博士;日本东京理科大学的 Akihiro Kudo 教授;日本京都大学的 Ryu Abe 教授;日本东京工业大学的 Osamu Ishitani 教授、美国 JCAP 的 Harry Atwater 教授、美国北卡罗来纳大学的 Jillian Dempsey 教授、美国劳伦斯伯克利国家实验室的 Frances Houle 博士;美国北卡罗来纳大学的 Jerry Meyer 教授、美国亚利桑那州立大学的 Ellen Stechel 教授以及多位研讨会参与者。插图由 Sacha Corby 博士、Alessandra Sanson 博士、Harry Atwater 教授和 Thomas Schleker 博士提供。
停飞之前,其他子系统也发生了几次电气故障。全日空航空公司 (ANA) 报告称,2012 年 5 月至 12 月期间,至少有 10 块电池因电压异常或其他异常行为而不得不退回 [1]。2012 年 12 月 4 日,一架联合航空公司的航班在遇到电力问题后被迫紧急降落在新奥尔良 [2],最初被认为是机械问题,但后来发现是由于电源面板主板上的电弧引起的。2012 年 12 月 13 日,一架卡塔尔航空公司的飞机因类似的电气问题停飞 [3]。几天后,联合航空公司证实其另一架 787 飞机也出现了电气问题 [2]。另一起事件涉及 2013 年 1 月 9 日的制动诊断系统误报 [4]。虽然这些故障引发了担忧,但最终停飞还是由 2013 年 1 月相隔 10 天发生的两次灾难性电池故障引起的。2013 年 1 月 7 日,一架停飞的 787 飞机发生电池起火。一名机械师注意到辅助动力装置 (APU) 发生电源故障,随后辅助电池端子冒出火焰和烟雾。快速释放旋钮熔化阻碍了第一时间响应,但电池大火最终被扑灭。一名消防员在电池泄压时被烧伤 [5]。2013 年 1 月 16 日,全日空运营的一架 787 飞机发生电池故障。此次故障导致飞行员在日本香川县高松机场紧急降落。据全日空航空公司副总裁 Osamu Shinobe 称,“驾驶舱内发出电池警报,并在驾驶舱和客舱内检测到异味,(飞行员)决定紧急降落”[6]。日本检查人员发现辅助电池系统可能接线不当 [7],这进一步引发了人们对其他系统是否安装正确的疑问。
(Yachie N 是 + 第一和/或 * 通讯作者)基因组编辑:在 CRISPR-Cas9 基因组编辑中,向导 RNA 将 Cas9 募集到与原间隔区相邻基序 (PAM) 序列 5'-NGG-3' 相邻的目标基因组区域,然后 Cas9 产生 DNA 双链断裂 (DSB)。该事件通过诱导不同的 DNA 修复途径促进基因缺失或转基因插入,但 DSB 具有细胞毒性,并且基于 DSB 的编辑结果不可预测。我们与 Keiji Nishida 博士合作开发了一种新的基因组编辑工具 Target-AID,它将胞苷脱氨酶 (AID) 融合到切口酶 Cas9 上,并实现了高度精确的靶向 C→T 替换,而无需 DSB [Science 2016]。我们还与 Osamu Nureki 博士合作,成功将 Cas9 的靶向范围从限制性 NGG 扩展到 NG PAM(Cas9-NG),并开发了 Target-AID-NG [ Science 2018] 。此外,我的团队开发了一种新的碱基编辑器 Target-ACEmax,它能够在目标 DNA 分子上同时诱导 C→T 和 A→G 替换,极大地扩展了碱基编辑在治疗和生物技术开发中的潜力 [ Nature Biotechnology 2020*] 。我们还为由 Atsushi Hoshino 博士和 Osamu Nureki 博士领导的基于 Cas12f 的紧凑型基因组编辑工具的开发做出了贡献 [ Cell 2023] 。此外,为了探索除 CRIPSR-Cas9 和其他已表征的基因组编辑工具之外的新基因组编辑工具,我们开发了一种工具,可以从基因组和宏基因组资源中快速捕获周期性和间隔周期性重复序列 [ Nucleic Acids Research 2019*]。细胞谱系追踪:已提出了几种方法来追踪多细胞生物的发育细胞谱系,其中嵌入染色体的 DNA 条形码通过 Cas9 不断突变并从母细胞遗传到子细胞,可以根据观察时的突变模式重建谱系。然而,这些技术都没有实现高分辨率的谱系追踪。为了在单细胞分辨率下破译哺乳动物(小鼠)全身发育过程的图谱,我的团队概述了该领域的关键问题和观点 [Science 2022*],并正在开发新的基因回路、小鼠工程和高性能计算技术。上述 Target-AID 和 Target-ACEmax 主要用于高分辨率细胞谱系追踪。我们还开发了一种新的深度分布式计算平台,并成功对模拟器生成的超过 2.35 亿个突变序列进行了精确的谱系重建 [Nature Biotechnology 2022*]。回顾性克隆分离:“化疗抗性克隆是否从一开始就存在于具有独特细胞状态的初始细胞群中?”或“观察到的干细胞分化命运背后是否有任何分子因素?”等问题突出了许多尚未解决的生物学问题。如果可以从初始细胞群中分离出在细胞进展后期表现出特定表型的克隆,则可以解决这些问题。最近出现了“回顾性克隆分离”这一新概念来解决上述问题。首先在这样的系统中繁殖条形码细胞群,然后对其亚群进行给定的测定。在识别出感兴趣的条形码克隆后,以条形码特定的方式从初始或实验期间存储的任何其他亚群中分离出相同的克隆(或其近亲)。然后可以对分离的活克隆进行任何后续实验,包括组学测量和用分离物重建合成细胞群。我们最近建立了一种使用 CRISPR 碱基编辑的高性能回顾性分离技术 CloneSelect [ bioRxiv 2022*]。我们已经证明 CloneSelect 适用于人类癌细胞系、人类多能干细胞、小鼠干细胞、酵母细胞和大肠杆菌细胞。细胞网络:癌症和人类疾病通常由复杂的细胞网络介导。我们已经证明,涉及破坏蛋白质相互作用的基因组突变在癌症和其他人类疾病中高度富集 [ Cell 2015]。此外,通过利用蛋白质编码基因的 DNA 分子标记和大规模并行 DNA 测序,我们开发了一种新的高通量蛋白质相互作用技术 BFG-Y2H(条形码融合遗传学-酵母双杂交)。该技术使单个研究人员能够在 2-3 周内筛选至少 250 万个蛋白质对的蛋白质相互作用 [ Molecular Systems Biology 2016+,*]。使用我们已经证明 CloneSelect 适用于人类癌细胞系、人类多能干细胞、小鼠干细胞、酵母细胞和大肠杆菌细胞。细胞网络:癌症和人类疾病通常由复杂的细胞网络介导。我们已经证明,与破坏蛋白质相互作用有关的基因组突变在癌症和其他人类疾病中高度富集 [ Cell 2015] 。此外,通过利用蛋白质编码基因的 DNA 分子标记和大规模并行 DNA 测序,我们开发了一种新的高通量蛋白质相互作用技术 BFG-Y2H(条形码融合遗传学-酵母双杂交)。该技术使单个研究人员能够在 2-3 周内筛选至少 250 万个蛋白质对的蛋白质相互作用 [ Molecular Systems Biology 2016+,*] 。使用我们已经证明 CloneSelect 适用于人类癌细胞系、人类多能干细胞、小鼠干细胞、酵母细胞和大肠杆菌细胞。细胞网络:癌症和人类疾病通常由复杂的细胞网络介导。我们已经证明,与破坏蛋白质相互作用有关的基因组突变在癌症和其他人类疾病中高度富集 [ Cell 2015] 。此外,通过利用蛋白质编码基因的 DNA 分子标记和大规模并行 DNA 测序,我们开发了一种新的高通量蛋白质相互作用技术 BFG-Y2H(条形码融合遗传学-酵母双杂交)。该技术使单个研究人员能够在 2-3 周内筛选至少 250 万个蛋白质对的蛋白质相互作用 [ Molecular Systems Biology 2016+,*] 。使用
[查尔默斯 01] 大卫·查尔默斯,Hajime Hayashi 译:《意识:寻找大脑和精神的基本理论》,白洋社(2001) [克拉克 22] 安迪·克拉克,Takashi Ikegami 和 Gentaro Morimoto 译:《显现的存在:大脑、身体和世界的重新整合》,Hayakawa Publishing(2022) [笛卡尔 67] 勒内·笛卡尔,Taro Ochiai 译:《方法论》,Iwanami Bunko(1967) [德勒兹 12] 吉尔斯·德勒兹和菲利克斯·瓜塔里,Osamu Zaitsu 译:《什么是哲学?》,Kawade Bunko(2012) [丹尼特 96] 丹尼尔·丹尼特,Tadashi Wakashima 和 Manabu Kawata 译:《意图》 “态度”的哲学——人能读懂别人的行为吗? ,白洋社(1996) [Ganassia 19] Ganassia Jean-Gabriel,伊藤直子译:埋葬虚假的AI神话“奇点”,早川出版(2019) [Heidegger 13] Heidegger Martin,熊野澄彦译:存在与时间,岩波文库(2013) [Hume 04] 休谟·戴维,斋藤繁雄、一之濑正树译:人类智力研究——附人性论概要,法政大学出版会(2004) [Husserl 79] 胡塞尔·埃德蒙,渡边次郎译:理念 I-I 纯粹现象学概论,美铃书房(1979) [ Husserl 01] 埃德蒙德·胡塞尔,滨涡达二译:《笛卡尔的沉思》,岩波文库(2001) [Jung 16] 卡尔·荣格,林道吉译:《个体化与曼荼罗(新版)》,美铃书房(2016) [Kant 60] 伊曼纽尔·康德,篠田秀夫译:《纯粹理性批判》,岩波文库(1960) [Kurzweil 07] Ley Kurzweil,井上健、小野木章监修翻译