(Yachie N 是 + 第一和/或 * 通讯作者)基因组编辑:在 CRISPR-Cas9 基因组编辑中,向导 RNA 将 Cas9 募集到与原间隔区相邻基序 (PAM) 序列 5'-NGG-3' 相邻的目标基因组区域,然后 Cas9 产生 DNA 双链断裂 (DSB)。该事件通过诱导不同的 DNA 修复途径促进基因缺失或转基因插入,但 DSB 具有细胞毒性,并且基于 DSB 的编辑结果不可预测。我们与 Keiji Nishida 博士合作开发了一种新的基因组编辑工具 Target-AID,它将胞苷脱氨酶 (AID) 融合到切口酶 Cas9 上,并实现了高度精确的靶向 C→T 替换,而无需 DSB [Science 2016]。我们还与 Osamu Nureki 博士合作,成功将 Cas9 的靶向范围从限制性 NGG 扩展到 NG PAM(Cas9-NG),并开发了 Target-AID-NG [ Science 2018] 。此外,我的团队开发了一种新的碱基编辑器 Target-ACEmax,它能够在目标 DNA 分子上同时诱导 C→T 和 A→G 替换,极大地扩展了碱基编辑在治疗和生物技术开发中的潜力 [ Nature Biotechnology 2020*] 。我们还为由 Atsushi Hoshino 博士和 Osamu Nureki 博士领导的基于 Cas12f 的紧凑型基因组编辑工具的开发做出了贡献 [ Cell 2023] 。此外,为了探索除 CRIPSR-Cas9 和其他已表征的基因组编辑工具之外的新基因组编辑工具,我们开发了一种工具,可以从基因组和宏基因组资源中快速捕获周期性和间隔周期性重复序列 [ Nucleic Acids Research 2019*]。细胞谱系追踪:已提出了几种方法来追踪多细胞生物的发育细胞谱系,其中嵌入染色体的 DNA 条形码通过 Cas9 不断突变并从母细胞遗传到子细胞,可以根据观察时的突变模式重建谱系。然而,这些技术都没有实现高分辨率的谱系追踪。为了在单细胞分辨率下破译哺乳动物(小鼠)全身发育过程的图谱,我的团队概述了该领域的关键问题和观点 [Science 2022*],并正在开发新的基因回路、小鼠工程和高性能计算技术。上述 Target-AID 和 Target-ACEmax 主要用于高分辨率细胞谱系追踪。我们还开发了一种新的深度分布式计算平台,并成功对模拟器生成的超过 2.35 亿个突变序列进行了精确的谱系重建 [Nature Biotechnology 2022*]。回顾性克隆分离:“化疗抗性克隆是否从一开始就存在于具有独特细胞状态的初始细胞群中?”或“观察到的干细胞分化命运背后是否有任何分子因素?”等问题突出了许多尚未解决的生物学问题。如果可以从初始细胞群中分离出在细胞进展后期表现出特定表型的克隆,则可以解决这些问题。最近出现了“回顾性克隆分离”这一新概念来解决上述问题。首先在这样的系统中繁殖条形码细胞群,然后对其亚群进行给定的测定。在识别出感兴趣的条形码克隆后,以条形码特定的方式从初始或实验期间存储的任何其他亚群中分离出相同的克隆(或其近亲)。然后可以对分离的活克隆进行任何后续实验,包括组学测量和用分离物重建合成细胞群。我们最近建立了一种使用 CRISPR 碱基编辑的高性能回顾性分离技术 CloneSelect [ bioRxiv 2022*]。我们已经证明 CloneSelect 适用于人类癌细胞系、人类多能干细胞、小鼠干细胞、酵母细胞和大肠杆菌细胞。细胞网络:癌症和人类疾病通常由复杂的细胞网络介导。我们已经证明,涉及破坏蛋白质相互作用的基因组突变在癌症和其他人类疾病中高度富集 [ Cell 2015]。此外,通过利用蛋白质编码基因的 DNA 分子标记和大规模并行 DNA 测序,我们开发了一种新的高通量蛋白质相互作用技术 BFG-Y2H(条形码融合遗传学-酵母双杂交)。该技术使单个研究人员能够在 2-3 周内筛选至少 250 万个蛋白质对的蛋白质相互作用 [ Molecular Systems Biology 2016+,*]。使用我们已经证明 CloneSelect 适用于人类癌细胞系、人类多能干细胞、小鼠干细胞、酵母细胞和大肠杆菌细胞。细胞网络:癌症和人类疾病通常由复杂的细胞网络介导。我们已经证明,与破坏蛋白质相互作用有关的基因组突变在癌症和其他人类疾病中高度富集 [ Cell 2015] 。此外,通过利用蛋白质编码基因的 DNA 分子标记和大规模并行 DNA 测序,我们开发了一种新的高通量蛋白质相互作用技术 BFG-Y2H(条形码融合遗传学-酵母双杂交)。该技术使单个研究人员能够在 2-3 周内筛选至少 250 万个蛋白质对的蛋白质相互作用 [ Molecular Systems Biology 2016+,*] 。使用我们已经证明 CloneSelect 适用于人类癌细胞系、人类多能干细胞、小鼠干细胞、酵母细胞和大肠杆菌细胞。细胞网络:癌症和人类疾病通常由复杂的细胞网络介导。我们已经证明,与破坏蛋白质相互作用有关的基因组突变在癌症和其他人类疾病中高度富集 [ Cell 2015] 。此外,通过利用蛋白质编码基因的 DNA 分子标记和大规模并行 DNA 测序,我们开发了一种新的高通量蛋白质相互作用技术 BFG-Y2H(条形码融合遗传学-酵母双杂交)。该技术使单个研究人员能够在 2-3 周内筛选至少 250 万个蛋白质对的蛋白质相互作用 [ Molecular Systems Biology 2016+,*] 。使用
主要关键词